The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097325 Period 6: repeat [0, 1, 1, 1, 1, 1]. 19
 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n) is 0 if 6 divides n, 1 otherwise. LINKS Antti Karttunen, Table of n, a(n) for n = 0..26244 Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1). FORMULA G.f.: 1/(1-x) - 1/(1-x^6) = Sum_{k>=0} x^k - x^(6*k). Recurrence: a(n+6) = a(n), a(0) = 0, a(i) = 1, 1 <= i <= 5. a(n) = (1/4) * (3 - (-1)^n - (-1)^((n+1)/3) - (-1)^((2n+1)/3)). a(n) = (((1/3)*(cos(2*n*Pi/3) + 1/2)*(1 + (-1)^n)) - 1)^2. - Paolo P. Lava, Oct 09 2006 From Reinhard Zumkeller, Nov 30 2009: (Start) a(n) = 1 - A079979(n). a(A047253(n)) = 1, a(A008588(n)) = 0. A033438(n) = Sum_{k=0..n} a(k)*(n-k). (End) Dirichlet g.f.: (1 - 1/6^s)*zeta(s). - R. J. Mathar, Feb 19 2011 For the general case: the characteristic function of numbers that are not multiples of m is a(n) = floor((n-1)/m) - floor(n/m) + 1, m, n > 0. - Boris Putievskiy, May 08 2013 a(n) = sign(n mod 6). - Wesley Ivan Hurt, Jun 29 2013 a(n) = ceiling(5n/6) - floor(5n/6). - Wesley Ivan Hurt, Jun 20 2014 MAPLE seq(signum(k mod 6), k=0..100); # Wesley Ivan Hurt, Jun 29 2013 MATHEMATICA Table[Boole[Not[Divisible[n, 6]]], {n, 0, 89}] (* Alonso del Arte, Oct 21 2013 *) PadRight[{}, 120, {0, 1, 1, 1, 1, 1}] (* Michael De Vlieger, Dec 22 2017 *) PROG (PARI) a(n) = sign(n%6); (Magma) [Sign(n mod 6) : n in [0..50]]; // Wesley Ivan Hurt, Jun 20 2014 (Scheme) (define (A097325 n) (if (zero? (modulo n 6)) 0 1)) ;; Antti Karttunen, Dec 22 2017 CROSSREFS Characteristic sequence of A047253. Binary complement of A079979. Cf. A010875, A168185, A145568, A168184, A168182, A168181, A109720, A011558, A166486, A011655, A000035. Sequence in context: A089496 A182067 A196147 * A242647 A167393 A275606 Adjacent sequences: A097322 A097323 A097324 * A097326 A097327 A097328 KEYWORD nonn,easy AUTHOR Ralf Stephan, Aug 16 2004 EXTENSIONS New name from Omar E. Pol, Oct 21 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 04:50 EST 2022. Contains 358578 sequences. (Running on oeis4.)