login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097259 Numbers whose set of base 13 digits is {0,C}, where C base 13 = 12 base 10. 2
0, 12, 156, 168, 2028, 2040, 2184, 2196, 26364, 26376, 26520, 26532, 28392, 28404, 28548, 28560, 342732, 342744, 342888, 342900, 344760, 344772, 344916, 344928, 369096, 369108, 369252, 369264, 371124, 371136, 371280, 371292, 4455516 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

n such that there exists a permutation p_1, ..., p_n of 1, ..., n such that i + p_i is a power of 13 for every i.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = 12*A033049(n).

a(2n) = 13*a(n), a(2n+1) = a(2n)+12.

MATHEMATICA

f[n_] := FromDigits[ IntegerDigits[n, 2] /. {1 -> 12}, 13]; Array[f, 33, 0] (* or much slower *)

fQ[n_] := Union@ Join[{0, 12}, IntegerDigits[n, 13]] == {0, 12}; Select[ Range[0, 4455516 ], fQ] (* Robert G. Wilson v, May 12 2012 *)

FromDigits[#, 13]&/@Tuples[{0, 12}, 5] (* Vincenzo Librandi, Jun 04 2012 *)

PROG

(MAGMA) [n: n in [0..4500000] | Set(IntegerToSequence(n, 13)) subset {0, 12}]; // Vincenzo Librandi, Jun 04 2012

CROSSREFS

Cf. A001196, A005823, A097251-A097262.

Sequence in context: A085260 A082173 A005723 * A158546 A110216 A218839

Adjacent sequences:  A097256 A097257 A097258 * A097260 A097261 A097262

KEYWORD

nonn,base

AUTHOR

Ray Chandler, Aug 03 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 04:34 EST 2014. Contains 250286 sequences.