The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097254 Numbers whose set of base 8 digits is {0,7}. 3
 0, 7, 56, 63, 448, 455, 504, 511, 3584, 3591, 3640, 3647, 4032, 4039, 4088, 4095, 28672, 28679, 28728, 28735, 29120, 29127, 29176, 29183, 32256, 32263, 32312, 32319, 32704, 32711, 32760, 32767, 229376, 229383, 229432, 229439, 229824 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS n such that there exists a permutation p_1, ..., p_n of 1, ..., n such that i + p_i is a power of 8 for every i. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..100 FORMULA a(n) = 7*A033045(n-1). a(2n-1) = 8*a(n), a(2n) = 8*a(n)+7. MATHEMATICA fQ[n_]:=Union@Join[{0, 7}, IntegerDigits[n, 8]]=={0, 7}; Select[Range[0, 300000], fQ] (* Vincenzo Librandi, May 25 2012 *) PROG (MAGMA) [n: n in [0..250000] | Set(IntegerToSequence(n, 8)) subset {0, 7}]; // Vincenzo Librandi, May 25 2012 (Maxima) a[1]:0\$ a[n]:=8*a[floor((n+1)/2)]+7*(1+(-1)^n)/2\$ makelist(a[n], n, 1, 37); /* Bruno Berselli, May 25 2012 */ (PARI) a(n) = 7*fromdigits(binary(n-1), 8) \\ Rémy Sigrist, Dec 06 2018 CROSSREFS Cf. A001196, A005823, A097251-A097262. Sequence in context: A116120 A056719 A038855 * A043911 A044526 A153797 Adjacent sequences:  A097251 A097252 A097253 * A097255 A097256 A097257 KEYWORD nonn,base AUTHOR Ray Chandler, Aug 03 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 06:19 EST 2020. Contains 338678 sequences. (Running on oeis4.)