login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097246 Replace factors of n that are squares of a prime with the prime succeeding this prime. 11
1, 2, 3, 3, 5, 6, 7, 6, 5, 10, 11, 9, 13, 14, 15, 9, 17, 10, 19, 15, 21, 22, 23, 18, 7, 26, 15, 21, 29, 30, 31, 18, 33, 34, 35, 15, 37, 38, 39, 30, 41, 42, 43, 33, 25, 46, 47, 27, 11, 14, 51, 39, 53, 30, 55, 42, 57, 58, 59, 45, 61, 62, 35, 27, 65, 66, 67, 51, 69, 70, 71, 30, 73 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) <= n; a(n) = n iff n is squarefree: a(A005117(n)) = A005117(n);

a(m*n) <= a(m)*a(n); a(m*n) = a(m)*a(n) iff m and n are coprime;

a(A000040(k)^n) = A000040(k+1)^floor(n/2)*A000040(k)^(n mod 2); a(2^n) = 3^floor(n/2) * (1 + n mod 2);

a(A000040(k)*A002110(n)/A002110(k-1)) = A000040(k+1)*A002110(n)/A002110(k) for k <= n, see also A097250.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000

FORMULA

Multiplicative with p^e -> NextPrime(p)^floor(e/2) * p^(e mod 2), where p prime and NextPrime(p)=A000040(A049084(p)+1).

From Antti Karttunen, Nov 15 2016: (Start)

a(1) = 1; for n > 1, a(n) = 2^A000035(A007814(n)) * 3^A004526(A007814(n)) * A003961(a(A064989(n))).

a(n) = A003961(A000188(n)) * A007913(n).

A048675(a(n)) = A048675(n).

(End)

MATHEMATICA

Table[Times @@ Map[#1^#2 & @@ # &, Partition[#, 2, 2] &@ Flatten[ FactorInteger[n] /. {p_, e_} /; e >= 2 :> {If[OddQ@ e, {p, 1}, {1, 1}], {NextPrime@ p, Floor[e/2]}}]], {n, 73}] (* Michael De Vlieger, Mar 18 2017 *)

PROG

(PARI) A097246(n) = { my(f=factor(n)); prod(i=1, #f~, (nextprime(f[i, 1]+1)^(f[i, 2]\2))*((f[i, 1])^(f[i, 2]%2))); }; \\ Antti Karttunen, Mar 18 2017

(Scheme)

(definec (A097246 n) (if (= 1 n) 1 (* (A000244 (A004526 (A007814 n))) (A000079 (A000035 (A007814 n))) (A003961 (A097246 (A064989 n))))))

(define (A097246 n) (* (A003961 (A000188 n)) (A007913 n)))

;; Antti Karttunen, Nov 15 2016

(Python)

from sympy import factorint, nextprime

from operator import mul

def a(n):

    f=factorint(n)

    return 1 if n==1 else reduce(mul, [(nextprime(i)**int(f[i]/2))*(i**(f[i]%2)) for i in f]) # Indranil Ghosh, May 15 2017

CROSSREFS

Cf. A097250, A000079, A000188, A000244, A003961, A004526, A005117, A007814, A007913, A048675, A064989.

Cf. A097247, A097248 (fixed points of iteration), A097249 (number of iterations needed to reach them for each n), A277886, A277899.

Sequence in context: A325183 A097248 A097247 * A277886 A337868 A063659

Adjacent sequences:  A097243 A097244 A097245 * A097247 A097248 A097249

KEYWORD

nonn,mult

AUTHOR

Reinhard Zumkeller, Aug 03 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 05:37 EST 2021. Contains 341649 sequences. (Running on oeis4.)