login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097243 Expansion of 1 + 32 * (eta(q^4) / eta(q))^8 in powers of q. 4
1, 32, 256, 1408, 6144, 22976, 76800, 235264, 671744, 1809568, 4640256, 11404416, 27009024, 61905088, 137803776, 298806528, 632684544, 1310891584, 2662655232, 5310231424, 10412576768, 20098970624, 38231811072, 71734039808, 132875747328, 243175399136 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Expansion of a q-series used in construction of j(tau) to j(2tau) iteration.

REFERENCES

H. Cohn, Introduction to the construction of class fields, Cambridge 1985, p. 191

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

FORMULA

G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u+3)^2 - 8*(u+1)*v^2.

a(n) = 32*A092877(n), if n>0. a(n) = A007096(4*n).

a(n) = A014969(2*n) = A139820(2*n) = A189925(4*n) = A212318(4*n) = A232358(4*n). - Michael Somos, Dec 15 2016

G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 1/8 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A007248. - Michael Somos, Dec 15 2016

a(n) ~ exp(2*Pi*sqrt(n))/(16*n^(3/4)). - Vaclav Kotesovec, Sep 08 2017

EXAMPLE

G.f. = 1 + 32*x + 256*x^2 + 1408*x^3 + 6144*x^4 + 22976*x^5 + 76800*x^6 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ 1 + 32 x (QPochhammer[ x^4] / QPochhammer[ x])^8, {x, 0, n}]; (* Michael Somos, Dec 15 2016 *)

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x^n * O(x); polcoeff( 1 + 32 * x * (eta(x^4 + A) / eta(x + A))^8, n))};

CROSSREFS

Cf. A007248, A007096, A014969, A092877, A139820, A189925, A212318, A232358.

Sequence in context: A250280 A159982 A195592 * A022327 A318022 A320407

Adjacent sequences:  A097240 A097241 A097242 * A097244 A097245 A097246

KEYWORD

nonn

AUTHOR

Michael Somos, Aug 02 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 19:41 EST 2018. Contains 318087 sequences. (Running on oeis4.)