login
A097215
Numbers m such that A076078(m) = m and bigomega(m) >= 2; or in other words, A097214, excluding powers of 2.
3
10, 44, 184, 752, 12224, 49024, 61064, 981520, 12580864, 206158168064, 16492668126208, 1080863908958322688, 18374686467592175488, 885443715520878608384, 4703919738602662723328, 226673591177468092350464, 232113757366000005450563584, 3894222643901120685369075227951104
OFFSET
1,1
COMMENTS
A076078(m) equals the number of sets of distinct positive integers with a least common multiple of m.
If 3*2^k - 1 is an odd prime then 2^k*(3*2^k-1) is in the sequence. - Farideh Firoozbakht, May 03 2009
For what seems to be an appearance of this sequence in a different context, see Harborth (2013). - N. J. A. Sloane, Jun 08 2013
LINKS
F. Firoozbakht, M. F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
Heiko Harborth, On h-perfect numbers, Annales Mathematicae et Informaticae, 41 (2013) pp. 57-62.
EXAMPLE
For example, there are 184 sets of distinct positive integers with a least common multiple of 184.
MATHEMATICA
f[n_] := Block[{d = Divisors[n]}, Plus @@ (MoebiusMu[n/d](2^DivisorSigma[0, d] - 1))]; t = Union[ Table[ f[n], {n, 28000000}]]; Select[t, f[ # ] == # && !IntegerQ[ Log[2, # ]] &] (* Robert G. Wilson v, Aug 17 2004 *)
PROG
(PARI) A076078(n) = {local(f, l, s, t, q); f = factor(n); l = matsize(f)[1]; s = 0; forvec(v = vector(l, i, [0, 1]), q = sum(i = 1, l, v[i]); t = (-1)^(l - q)*2^prod(i = 1, l, f[i, 2] + v[i]); s += t); s; }
lista(nn) = {my(w=List([]), m=1, q=2, g); for(k=1, logint(nn, 2)-1, q=nextprime(q+1); m=m*q; for(r=1, nn\2^k-1, g=factor(A076078(m*2^r))[, 2]; if(#g==k+1&&g[2]==1, listput(w, A076078(m*2^r))))); Set(w); } \\ Jinyuan Wang, Feb 11 2020
CROSSREFS
Cf. A002235. - Farideh Firoozbakht, May 03 2009
Sequence in context: A220994 A097416 A076373 * A281993 A126397 A164607
KEYWORD
nonn
AUTHOR
Matthew Vandermast, Aug 12 2004
EXTENSIONS
More terms from Robert G. Wilson v, Aug 18 2004
More terms from Jinyuan Wang, Feb 11 2020
STATUS
approved