The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097194 Row sums of triangle A097190, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A097191(y)^(n+1), where R_n(1/3) = 9^n for all n>=0. 2
 1, 25, 649, 17065, 451621, 11998801, 319623445, 8530126057, 227974775239, 6099550226965, 163340461497907, 4377292845062689, 117376545230379631, 3149059523347103293, 84522568856319875179, 2269506752111508954553 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..690 FORMULA G.f.: A(x) = 3/((1-27*x) + 2*(1-27*x)^(8/9)). G.f.: A(x, y) = A097192(x)/(1 - x*A097193(x)). MAPLE seq(coeff(series(3/((1-27*x) +2*(1-27*x)^(8/9)), x, n+1), x, n), n = 0 ..20); # G. C. Greubel, Sep 17 2019 MATHEMATICA CoefficientList[Series[3/((1-27*x) +2*(1-27*x)^(8/9)), {x, 0, 20}], x] (* G. C. Greubel, Sep 17 2019 *) PROG (PARI) a(n)=polcoeff(3/((1-27*x) + 2*(1-27*x+x*O(x^n))^(8/9)), n, x) (MAGMA) R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( 3/((1-27*x) +2*(1-27*x)^(8/9)) )); // G. C. Greubel, Sep 17 2019 (Sage) def A097194_list(prec):     P. = PowerSeriesRing(QQ, prec)     return P(3/((1-27*x) +2*(1-27*x)^(8/9))).list() A097194_list(20) # G. C. Greubel, Sep 17 2019 CROSSREFS Cf. A097190. Sequence in context: A260048 A152256 A153111 * A180811 A318183 A015697 Adjacent sequences:  A097191 A097192 A097193 * A097195 A097196 A097197 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 03 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 09:21 EDT 2021. Contains 343125 sequences. (Running on oeis4.)