

A097165


Expansion of (13x)/((1x)(14x)(15x)).


3



1, 7, 41, 227, 1221, 6447, 33601, 173467, 889181, 4533287, 23015961, 116477907, 587981941, 2962279327, 14900875121, 74862289547, 375743103501, 1884442140567, 9445117195081, 47317211944387, 236952563597861
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Partial sums of A085351. Convolution of A034478 and 4^n. Convolution of A047849 and 5^n. a(n)=A097162(2n+1)/3. Third binomial transform of A097164.


LINKS

Table of n, a(n) for n=0..20.
Index entries for linear recurrences with constant coefficients, signature (10,29,20).


FORMULA

a(n)=5*5^n/24*4^n/31/6; a(n)=sum{k=0..n, (5^k+1)4^(nk)/2}; a(n)=sum{k=0..n, (4^k+2)5^(nk)/3}; a(n)=10a(n1)29a(n2)+20a(n3).


MATHEMATICA

CoefficientList[Series[(13x)/((1x)(14x)(15x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{10, 29, 20}, {1, 7, 41}, 30] (* Harvey P. Dale, Jan 24 2012 *)


CROSSREFS

Sequence in context: A239041 A081625 A144635 * A152268 A026002 A173409
Adjacent sequences: A097162 A097163 A097164 * A097166 A097167 A097168


KEYWORD

easy,nonn


AUTHOR

Paul Barry, Jul 30 2004


STATUS

approved



