login
A097134
a(n) = 3*Fibonacci(2*n) + 0^n.
5
1, 3, 9, 24, 63, 165, 432, 1131, 2961, 7752, 20295, 53133, 139104, 364179, 953433, 2496120, 6534927, 17108661, 44791056, 117264507, 307002465, 803742888, 2104226199, 5508935709, 14422580928, 37758807075, 98853840297, 258802713816
OFFSET
0,2
COMMENTS
Binomial transform of A097133.
Image of 1/(1-3x) under the mapping g(x)->g(x/(1+x^2)). - Paul Barry, Jan 16 2005
FORMULA
G.f.: (1+x^2)/(1-3*x+x^2).
a(n) = 3*a(n-1) - a(n-2) for n > 2.
a(n) = Sum_{k=0..n} binomial(n, k)*(3*Fibonacci(k)+(-1)^k).
a(n) = A097135(2*n).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1,k)*(-1)^k*3^(n-2*k). - Paul Barry, Jan 16 2005
a(n) = Fibonacci(n+2)^2 - Fibonacci(n-2)^2. - Gary Detlefs, Dec 03 2010
a(n) = Fibonacci(6*n) - 5*Fibonacci(2*n)^3 for n > 0. - Gary Detlefs, Oct 18 2011
E.g.f.: 1 + 6*exp(3*x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, Aug 19 2019
PROG
(Magma) [3*Fibonacci(2*n)+0^n: n in [0..30]]; // Vincenzo Librandi, Apr 21 2011
(PARI) a(n)=3*fibonacci(n+n)+0^n \\ Charles R Greathouse IV, Oct 18 2011
CROSSREFS
Cf. A000045.
Sequence in context: A090400 A123888 A166290 * A123892 A269531 A064831
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Jul 26 2004
STATUS
approved