login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097134 a(n) = 3*Fibonacci(2*n) + 0^n. 5
1, 3, 9, 24, 63, 165, 432, 1131, 2961, 7752, 20295, 53133, 139104, 364179, 953433, 2496120, 6534927, 17108661, 44791056, 117264507, 307002465, 803742888, 2104226199, 5508935709, 14422580928, 37758807075, 98853840297, 258802713816 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of A097133.

Image of 1/(1-3x) under the mapping g(x)->g(x/(1+x^2)). - Paul Barry, Jan 16 2005

LINKS

Table of n, a(n) for n=0..27.

Index entries for linear recurrences with constant coefficients, signature (3,-1).

FORMULA

G.f.: (1+x^2)/(1-3*x+x^2).

a(n) = 3*a(n-1) - a(n-2) for n > 2.

a(n) = Sum_{k=0..n} binomial(n, k)*(3*Fibonacci(k)+(-1)^k).

a(n) = A097135(2*n).

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1,k)*(-1)^k*3^(n-2*k). - Paul Barry, Jan 16 2005

a(n) = Fibonacci(n+2)^2 - Fibonacci(n-2)^2. - Gary Detlefs, Dec 03 2010

a(n) = Fibonacci(6*n) - 5*Fibonacci(2*n)^3 for n > 0. - Gary Detlefs, Oct 18 2011

E.g.f.: 1 + 6*exp(3*x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, Aug 19 2019

PROG

(Magma) [3*Fibonacci(2*n)+0^n: n in [0..30]]; // Vincenzo Librandi, Apr 21 2011

(PARI) a(n)=3*fibonacci(n+n)+0^n \\ Charles R Greathouse IV, Oct 18 2011

CROSSREFS

Cf. A000045.

Sequence in context: A090400 A123888 A166290 * A123892 A269531 A064831

Adjacent sequences:  A097131 A097132 A097133 * A097135 A097136 A097137

KEYWORD

nonn,easy

AUTHOR

Paul Barry, Jul 26 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 05:48 EST 2022. Contains 358353 sequences. (Running on oeis4.)