|
|
A097067
|
|
Expansion of (1-4*x+5*x^2)/(1-2*x)^2.
|
|
4
|
|
|
1, 0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264, 24576, 53248, 114688, 245760, 524288, 1114112, 2359296, 4980736, 10485760, 22020096, 46137344, 96468992, 201326592, 419430400, 872415232, 1811939328, 3758096384
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Binomial transform of A097065. Binomial transform is (n-2)*2^(n-1)+2, or A048495 with an extra leading 1.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..2000
Index entries for linear recurrences with constant coefficients, signature (4,-4).
|
|
FORMULA
|
a(n) = (n-1)2^(n-2)+5*0^n/4; a(n) = 4*a(n-1)-4*a(n-2), n>1.
a(n+1) = A001787(n).
|
|
MAPLE
|
a:=n->abs(floor(sum (2^(n-1), j=1..n))): seq(a(n), n=-1..28); # Zerinvary Lajos, Jun 27 2007
|
|
PROG
|
(MAGMA) [(n-1)*2^(n-2)+5*0^n/4 : n in [0..30]]; // Vincenzo Librandi, Sep 25 2011
(PARI) Vec((1-4*x+5*x^2)/(1-2*x)^2 + O(x^50)) \\ Altug Alkan, Nov 13 2015
|
|
CROSSREFS
|
Essentially the same as A001787.
Sequence in context: A097392 A090634 A260186 * A139756 A085750 A001787
Adjacent sequences: A097064 A097065 A097066 * A097068 A097069 A097070
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Paul Barry, Jul 22 2004
|
|
STATUS
|
approved
|
|
|
|