The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097065 Interleave n+1 and n-1. 7
 1, -1, 2, 0, 3, 1, 4, 2, 5, 3, 6, 4, 7, 5, 8, 6, 9, 7, 10, 8, 11, 9, 12, 10, 13, 11, 14, 12, 15, 13, 16, 14, 17, 15, 18, 16, 19, 17, 20, 18, 21, 19, 22, 20, 23, 21, 24, 22, 25, 23, 26, 24, 27, 25, 28, 26, 29, 27, 30, 28, 31, 29, 32, 30, 33, 31, 34, 32, 35, 33, 36, 34, 37, 35, 38 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Pairwise sums are abs(A023443), or n-1+2*0^n. The partial sums of this sequence is A000124, with extra leading 1. Partial sums are A097066. Binomial transform is A097067. LINKS Index entries for linear recurrences with constant coefficients, signature (1,1,-1). FORMULA G.f.: (1-2x+2x^2)/((1+x)(1-x)^2). a(n) = (2n-1)/4 + 5(-1)^n/4. a(n) = floor((n+2)/2) - 2 * (n mod 2). - Reinhard Zumkeller, Apr 06 2015 a(n) = a(n-1) + a(n-2) - a(n-3) for n > 2. - Wesley Ivan Hurt, Jan 10 2017 MAPLE A097065:=n->(2*n-1)/4 + 5*(-1)^n/4: seq(A097065(n), n=0..150); # Wesley Ivan Hurt, Jan 10 2017 MATHEMATICA Table[(2n - 1)/4 + 5(-1)^n/4, {n, 0, 75}] (* Or *) Flatten[ Table[{n + 1, n - 1}, {n, 0, 37}]] (* Or *) CoefficientList[Series[(1 - 2x + 2x^2)/((1 + x)(1 - x)^2), {x, 0, 75}], x] (* Robert G. Wilson v, Jul 24 2004 *) PROG (Haskell) import Data.List (transpose) a097065 n = n' - 2 * m where (n', m) = divMod (n + 2) 2 a097065_list = concat \$ transpose [[1 ..], [-1 ..]] (PARI) a(n)=n\2+1-n%2*2 \\ Charles R Greathouse IV, Sep 02 2015 (Magma) [(2*n-1)/4 + 5*(-1)^n/4 : n in [0..100]]; // Wesley Ivan Hurt, Jan 10 2017 CROSSREFS Essentially the same as A084964. Cf. A000124, A023443, A097066, A097067. Sequence in context: A025637 A195826 A331478 * A084964 A267182 A008720 Adjacent sequences:  A097062 A097063 A097064 * A097066 A097067 A097068 KEYWORD easy,sign AUTHOR Paul Barry, Jul 22 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 20:34 EDT 2022. Contains 357081 sequences. (Running on oeis4.)