The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097063 Expansion of (1-2*x+3*x^2)/((1+x)*(1-x)^3). 8
 1, 0, 3, 4, 9, 12, 19, 24, 33, 40, 51, 60, 73, 84, 99, 112, 129, 144, 163, 180, 201, 220, 243, 264, 289, 312, 339, 364, 393, 420, 451, 480, 513, 544, 579, 612, 649, 684, 723, 760, 801, 840, 883, 924, 969, 1012, 1059, 1104, 1153, 1200, 1251, 1300, 1353, 1404 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Partial sums of A097062. Pairwise sums are A002061. Binomial transform is essentially A007466. LINKS Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1). FORMULA G.f. : (1-2*x+3*x^2)/((1-x^2)(1-x)^2). a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). a(n) = Sum_{k=0..n} (k^2-k+1)*(-1)^(n-k). a(n) = 1/4 + (3/4)*(-1)^n + (1/2)*n^2, n >= 0. - Paolo P. Lava, Jun 10 2008 a(2n) = A058331(n); a(2n+1) = A046092(n). - R. J. Mathar, Oct 27 2008 a(n) = binomial(n+1, 2) - ceiling((n+1)/2) + 2((n+1) mod 2). - Wesley Ivan Hurt, Mar 08 2014 a(n) = 2*floor(n/2) + ceiling((n-1)^2/2). - M. Ryan Julian Jr., Sep 10 2019 a(n) = A326296(n + 1, n) for n > 0. - Andrew Howroyd, Sep 23 2019 MAPLE A097063:=n->(1/4) + (3/4)*(-1)^n + (1/2)*n^2; seq(A097063(n), n=0..50); # Wesley Ivan Hurt, Mar 08 2014 MATHEMATICA Table[(1/4) + (3/4)*(-1)^n + (1/2)*n^2, {n, 0, 50}] (* Wesley Ivan Hurt, Mar 08 2014 *) CROSSREFS A diagonal of A326296. Sequence in context: A230781 A025613 A356036 * A293569 A304825 A026476 Adjacent sequences: A097060 A097061 A097062 * A097064 A097065 A097066 KEYWORD easy,nonn AUTHOR Paul Barry, Jul 22 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 17:46 EST 2022. Contains 358703 sequences. (Running on oeis4.)