login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097063 Expansion of (1-2*x+3*x^2)/((1+x)*(1-x)^3). 7
1, 0, 3, 4, 9, 12, 19, 24, 33, 40, 51, 60, 73, 84, 99, 112, 129, 144, 163, 180, 201, 220, 243, 264, 289, 312, 339, 364, 393, 420, 451, 480, 513, 544, 579, 612, 649, 684, 723, 760, 801, 840, 883, 924, 969, 1012, 1059, 1104, 1153, 1200, 1251, 1300, 1353, 1404 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Partial sums of A097062. Pairwise sums are A002061. Binomial transform is essentially A007466.

LINKS

Table of n, a(n) for n=0..53.

Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).

FORMULA

G.f. : (1-2x+3x^2)/((1-x^2)(1-x)^2).

a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).

a(n) = sum{k=0..n, (k^2-k+1)(-1)^(n-k) }.

a(n) = 1/4+(3/4)*(-1)^n+(1/2)*n^2, n>=0 - Paolo P. Lava, Jun 10 2008

a(2n) = A058331(n). a(2n+1) = A046092(n). - R. J. Mathar, Oct 27 2008

a(n) = binomial(n+1, 2) - ceiling((n+1)/2) + 2((n+1) mod 2). - Wesley Ivan Hurt, Mar 08 2014

MAPLE

A097063:=n->(1/4) + (3/4)*(-1)^n + (1/2)*n^2; seq(A097063(n), n=0..50); # Wesley Ivan Hurt, Mar 08 2014

MATHEMATICA

Table[(1/4) + (3/4)*(-1)^n + (1/2)*n^2, {n, 0, 50}] (* Wesley Ivan Hurt, Mar 08 2014 *)

CROSSREFS

Sequence in context: A243185 A230781 A025613 * A293569 A026476 A002513

Adjacent sequences:  A097060 A097061 A097062 * A097064 A097065 A097066

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Jul 22 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 01:27 EST 2017. Contains 294912 sequences.