%I
%S 5,11,46,2536,558640,572783,3362407,7928108,8928803,67460050,
%T 106938971,1763350849,2501641555,2756149047,4584349318,5713606932,
%U 17941228664,375376083513,411124334926,452894760105,1167680330892,1933159894790,1946131548918,2506032014606,2507269866902,8217688694093
%N Numbers n such that the interval n^2 < x < (n+1)^2 contains two or more distinct nonsquare perfect powers A097054.
%C Empirically, there seem to be no intervals between consecutive squares containing more than two nonsquare perfect powers. a(5)..a(20) from Don Reble (djr(AT)nk.ca).
%H T. D. Noe, <a href="/A097056/b097056.txt">Table of n, a(n) for n = 1..180</a> (using the bfile from A117934)
%e a(1)=5: 5^2<3^3<2^5<6^2, a(2)=11: 11^2<5^3<2^7<12^2, a(4)=2536: 2536^2<x<2537^2 (6431296,6436369) contains 23^5=6436343 and 186^3=6434856.
%e 22 is not in the sequence because 2^9 and 8^3 (22^2<512<23^2) are not distinct.
%o (PARI) is(n)=my(s,t);forprime(p=3,2*log(n+1.5)\log(2),t=floor((n+1)^(2/p));if(t^p>n^2 && !ispower(t) && s++ > 1, return(1))); 0 \\ _Charles R Greathouse IV_, Dec 11 2012
%Y Cf. A000290, A097054, A097055.
%K nonn
%O 1,1
%A _Hugo Pfoertner_, Jul 21 2004
%E More terms from _David Wasserman_, Dec 17 2007
