This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097056 Numbers n such that the interval n^2 < x < (n+1)^2 contains two or more distinct nonsquare perfect powers A097054. 7

%I

%S 5,11,46,2536,558640,572783,3362407,7928108,8928803,67460050,

%T 106938971,1763350849,2501641555,2756149047,4584349318,5713606932,

%U 17941228664,375376083513,411124334926,452894760105,1167680330892,1933159894790,1946131548918,2506032014606,2507269866902,8217688694093

%N Numbers n such that the interval n^2 < x < (n+1)^2 contains two or more distinct nonsquare perfect powers A097054.

%C Empirically, there seem to be no intervals between consecutive squares containing more than two nonsquare perfect powers.

%H T. D. Noe, <a href="/A097056/b097056.txt">Table of n, a(n) for n = 1..180</a> (using the b-file from A117934)

%e a(1)=5: 5^2<3^3<2^5<6^2, a(2)=11: 11^2<5^3<2^7<12^2, a(4)=2536: 2536^2<x<2537^2 (6431296,6436369) contains 23^5=6436343 and 186^3=6434856.

%e 22 is not in the sequence because 2^9 and 8^3 (22^2<512<23^2) are not distinct.

%o (PARI) is(n)=my(s,t); forprime(p=3,2*log(n+1.5)\log(2), t=floor((n+1)^(2/p)); if(t^p>n^2 && !ispower(t) && s++ > 1, return(1))); 0 \\ _Charles R Greathouse IV_, Dec 11 2012

%o (PARI) haspow(lower,upper,eMin,eMax)=if(sqrtnint(upper,3)^3>lower, return(1)); forprime(e=eMin,eMax, if(sqrtnint(upper,e)^e>lower, return(1))); 0

%o list(lim)=lim\=1; my(v=List(),M=(lim+1)^2,L=logint(M,2),s); forprime(e=5,L, forprime(p=2,sqrtnint(M,e), s=sqrtint(p^e); if(haspow(s^2,(s+1)^2-1,e+1,L) && s<=lim, listput(v,s)))); Set(v) \\ _Charles R Greathouse IV_, Nov 05 2015

%Y Cf. A000290, A097054, A097055.

%K nonn,changed

%O 1,1

%A _Hugo Pfoertner_, Jul 21 2004

%E a(5)-a(20) from _Don Reble_

%E a(21)-a(26) from _David Wasserman_, Dec 17 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.