login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097056 Numbers n such that the interval n^2 < x < (n+1)^2 contains two or more distinct nonsquare perfect powers A097054. 6

%I

%S 5,11,46,2536,558640,572783,3362407,7928108,8928803,67460050,

%T 106938971,1763350849,2501641555,2756149047,4584349318,5713606932,

%U 17941228664,375376083513,411124334926,452894760105,1167680330892,1933159894790,1946131548918,2506032014606,2507269866902,8217688694093

%N Numbers n such that the interval n^2 < x < (n+1)^2 contains two or more distinct nonsquare perfect powers A097054.

%C Empirically, there seem to be no intervals between consecutive squares containing more than two nonsquare perfect powers.

%H T. D. Noe, <a href="/A097056/b097056.txt">Table of n, a(n) for n = 1..180</a> (using the b-file from A117934)

%e a(1)=5: 5^2<3^3<2^5<6^2, a(2)=11: 11^2<5^3<2^7<12^2, a(4)=2536: 2536^2<x<2537^2 (6431296,6436369) contains 23^5=6436343 and 186^3=6434856.

%e 22 is not in the sequence because 2^9 and 8^3 (22^2<512<23^2) are not distinct.

%o (PARI) is(n)=my(s,t); forprime(p=3,2*log(n+1.5)\log(2), t=floor((n+1)^(2/p)); if(t^p>n^2 && !ispower(t) && s++ > 1, return(1))); 0 \\ _Charles R Greathouse IV_, Dec 11 2012

%o (PARI) haspow(lower,upper,eMin,eMax)=if(sqrtnint(upper,3)^3>lower, return(1)); forprime(e=eMin,eMax, if(sqrtnint(upper,e)^e>lower, return(1))); 0

%o list(lim)=lim\=1; my(v=List(),M=(lim+1)^2,L=logint(M,2),s); forprime(e=5,L, forprime(p=2,sqrtnint(M,e), s=sqrtint(p^e); if(haspow(s^2,(s+1)^2-1,e+1,L) && s<=lim, listput(v,s)))); Set(v) \\ _Charles R Greathouse IV_, Nov 05 2015

%Y Cf. A000290, A097054, A097055.

%K nonn

%O 1,1

%A _Hugo Pfoertner_, Jul 21 2004

%E a(5)-a(20) from Don Reble (djr(AT)nk.ca)

%E a(21)-a(26) from _David Wasserman_, Dec 17 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 05:39 EST 2016. Contains 278841 sequences.