login
A097032
Total length of transient and terminal cycle if unitary-proper-divisor-sum function f(x) = A034460(x) is iterated and the initial value is n. Number of distinct terms in iteration list, including also the terminal 0 in the count if the iteration doesn't end in a cycle.
10
2, 3, 3, 3, 3, 1, 3, 3, 3, 4, 3, 4, 3, 5, 4, 3, 3, 5, 3, 5, 4, 6, 3, 5, 3, 4, 3, 5, 3, 3, 3, 3, 5, 6, 4, 6, 3, 7, 4, 6, 3, 3, 3, 4, 5, 5, 3, 6, 3, 6, 5, 6, 3, 3, 4, 4, 4, 4, 3, 1, 3, 7, 4, 3, 4, 3, 3, 7, 4, 8, 3, 6, 3, 7, 4, 6, 4, 2, 3, 7, 3, 5, 3, 7, 4, 6, 6, 6, 3, 1, 5, 6, 5, 7, 4, 7, 3, 7, 5, 4, 3, 3, 3, 7, 7
OFFSET
1,1
LINKS
FORMULA
a(n) = A318882(n) + (1-A318880(n)). - Antti Karttunen, Sep 23 2018
EXAMPLE
From Antti Karttunen, Sep 24 2018: (Start)
For n = 1, A034460(1) = 0, thus a(1) = 1+1 = 2.
For n = 2, A034460(2) = 1, and A034460(1) = 0, so we end to the zero after a transient part of length 2, thus a(2) = 2+1 = 3.
For n = 30, A034460(30) = 42, A034460(42) = 54, A034460(54) = 30, thus a(30) = a(42) = a(54) = 0+3 = 3, as 30, 42 and 54 are all contained in their own terminal cycle of length 3, without a preceding transient part. (End)
For n = 1506, the iteration-list is {1506, 1518, 1938, 2382, 2394, 2406, [2418, 2958, 3522, 3534, 4146, 4158, 3906, 3774, 4434, 4446, 3954, 3966, 3978, 3582, 2418, ..., ad infinitum]}. After a transient of length 6 the iteration ends in a cycle of length 14, thus a(1506) = 6+14 = 20.
MATHEMATICA
a034460[0] = 0; (* avoids dividing by 0 when an iteration reaches 0 *)
a034460[n_] := Total[Select[Divisors[n], GCD[#, n/#]==1&]]-n/; n>0
a097032[n_] := Map[Length[NestWhileList[a034460, #, UnsameQ, All]]-1&, Range[n]]
a097032[105] (* Hartmut F. W. Hoft, Jan 24 2024 *)
PROG
(PARI)
A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
A097032(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(j-1), mapput(visited, n, j)); n = A034460(n); if(!n, return(j+1))); }; \\ Antti Karttunen, Sep 23 2018
CROSSREFS
Cf. A002827 (the positions of ones).
Cf. A318882 (sequence that implements the original definition of this sequence).
Sequence in context: A322225 A110049 A246577 * A127661 A358617 A008968
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 30 2004
EXTENSIONS
Definition corrected (to agree with the given terms) by Antti Karttunen, Sep 23 2018, based on observations by Hartmut F. W. Hoft
STATUS
approved