OFFSET
1,1
COMMENTS
In A084301, that is among remainders of sigma(n) modulo 6, chains of 0's can be large. On the contrary, the length of non-0-remainder-chains is believed to be limited or occurrence of longer chains is rare. Consider remainders of sigma(5x) modulo 6.
The first 1000 terms are all divisible by 144. - Donovan Johnson, Aug 07 2013
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..1000
EXAMPLE
n = 14590800: sigma values for {n, n+1, n+2, n+3, n+4} = {59658880, 15110144, 22806063, 20958080, 25533914} have remainders modulo 6 as follows {4,2,3,2,2}.
PROG
(PARI) forstep(m=25, 10110704400, 25, if(sigma(m)%6<>0, n=m; c=1; forstep(j=m-1, m-4, -1, if(sigma(j)%6<>0, c++; n=j, j=m-4)); for(j=m+1, m+4, if(sigma(j)%6<>0, c++, j=m+4)); if(c>=5, print1(n ", ")))) /* Donovan Johnson, Aug 06 2013 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 23 2004
EXTENSIONS
a(6)-a(20) from Donovan Johnson, Sep 03 2008
STATUS
approved