%I #32 Sep 08 2022 08:45:14
%S 3,2,8,4,43,9,67,37,137,173,16,73,163,257,281,211,353,169,401,283,256,
%T 157,331,1024,193,1009,617,641,653,677,64,523,547,277,1489,1811,313,
%U 977,1669,691,1789,1447,4201,1543,787,397,421,1783,907,457,3727,1433,3373
%N a(n) is the least number such that sigma(a(n)) is divisible by the n-th prime.
%C Note that a(n) always exists, because sigma(2^(p-2)) = 2^(p-1)-1 is divisible by p for p>2 (by Fermat's little theorem), so there is always a candidate for a(n). Compare A227470, A272349. - _N. J. A. Sloane_, May 01 2016
%H Donovan Johnson, <a href="/A097018/b097018.txt">Table of n, a(n) for n = 1..10000</a>
%e n=11: a(11)=16 is the least number x such that sigma(x) is divisible by the 11th prime, 31.
%t ln[n_]:=Module[{x=1,p=Prime[n]},While[!Divisible[DivisorSigma[ 1,x], p],x++];x]; Array[ln,60] (* _Harvey P. Dale_, Sep 07 2014 *)
%t Module[{nn=5000,ds},ds=DivisorSigma[1,Range[nn]];Table[Position[ds,_?(Divisible[#,n]&),1,1],{n,Prime[Range[60]]}]]//Flatten (* Much faster than the first program *) (* _Harvey P. Dale_, May 18 2018 *)
%o (PARI) sigma_hunt(x)=local(n=0,g);while(n++,g=sigma(n);if(g%x,,return(n)));
%o for(x=1,50,print1(sigma_hunt(prime(x))", ")) /* _Phil Carmody_, Mar 01 2013 */
%o (Magma) sol:=[]; p:=PrimesUpTo(10000); for n in [1..53] do k:=2; while Max(PrimeDivisors(SumOfDivisors(k))) ne p[n] do k:=k+1; end while; sol[n]:=k; end for; sol; // _Marius A. Burtea_, Jun 05 2019
%Y Cf. A000203, A000040, A272349, A227470.
%K nonn
%O 1,1
%A _Labos Elemer_, Aug 23 2004