The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097018 a(n) is the least number such that sigma(a(n)) is divisible by the n-th prime. 4
 3, 2, 8, 4, 43, 9, 67, 37, 137, 173, 16, 73, 163, 257, 281, 211, 353, 169, 401, 283, 256, 157, 331, 1024, 193, 1009, 617, 641, 653, 677, 64, 523, 547, 277, 1489, 1811, 313, 977, 1669, 691, 1789, 1447, 4201, 1543, 787, 397, 421, 1783, 907, 457, 3727, 1433, 3373 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Note that a(n) always exists, because sigma(2^(p-2)) = 2^(p-1)-1 is divisible by p for p>2 (by Fermat's little theorem), so there is always a candidate for a(n). Compare A227470, A272349. - N. J. A. Sloane, May 01 2016 LINKS Donovan Johnson, Table of n, a(n) for n = 1..10000 EXAMPLE n=11: a(11)=16 is the least number x such that sigma(x) is divisible by the 11th prime, 31. MATHEMATICA ln[n_]:=Module[{x=1, p=Prime[n]}, While[!Divisible[DivisorSigma[ 1, x], p], x++]; x]; Array[ln, 60] (* Harvey P. Dale, Sep 07 2014 *) Module[{nn=5000, ds}, ds=DivisorSigma[1, Range[nn]]; Table[Position[ds, _?(Divisible[#, n]&), 1, 1], {n, Prime[Range[60]]}]]//Flatten (* Much faster than the first program *) (* Harvey P. Dale, May 18 2018 *) PROG (PARI) sigma_hunt(x)=local(n=0, g); while(n++, g=sigma(n); if(g%x, , return(n))); for(x=1, 50, print1(sigma_hunt(prime(x))", ")) /* Phil Carmody, Mar 01 2013 */ (Magma) sol:=[]; p:=PrimesUpTo(10000); for n in [1..53] do k:=2; while Max(PrimeDivisors(SumOfDivisors(k))) ne p[n] do k:=k+1; end while; sol[n]:=k; end for; sol; // Marius A. Burtea, Jun 05 2019 CROSSREFS Cf. A000203, A000040, A272349, A227470. Sequence in context: A127300 A129199 A211164 * A127541 A053219 A173030 Adjacent sequences: A097015 A097016 A097017 * A097019 A097020 A097021 KEYWORD nonn AUTHOR Labos Elemer, Aug 23 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 12:40 EST 2022. Contains 358586 sequences. (Running on oeis4.)