OFFSET
0,2
COMMENTS
An upper bound for the Lagrange-remainder in the expansion of log((1+x)/(1-x)) for x=1/3, i.e., for log(2), is R(2*n):=(1/2^(2*n+1) + 1/3^(2*n+1))/(2*n+1).
REFERENCES
M. Barner and F. Flohr, Analysis I, de Gruyter, 5te Auflage, 2000; p. 293.
LINKS
W. Lang, More comments.
FORMULA
a(n)=denominator(A(n)), where A(n):=(6/5)*(1/2^(2*n+1) + 1/3^(2*n+1))/(2*n+1) = A096951(n)/((2*n+1)*6^(2*n)).
EXAMPLE
n=4: R(2*4)=(5/6)* A096952(4)/a(4) = (5/6)*4039/15116544 = 20195/90699264 = 0.0002226589..., therefore log(2)-2*sum(((1/3)^(2*k-1))/(2*k-1),k=1..4) < 0.0002226589... In fact, the partial sum is 0.0000124233...
PROG
(PARI) vector(30, n, n--; denominator((6/5)*(1/2^(2*n+1) + 1/3^(2*n+1))/(2*n+1))) \\ Michel Marcus, Jul 06 2015
(Magma) [Denominator((6/5)*(1/2^(2*n+1) + 1/3^(2*n+1))/(2*n+1)): n in [0..20]]; // Vincenzo Librandi, Jul 06 2015
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Jul 16 2004
STATUS
approved