This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096953 Denominators of upper bounds for Lagrange-remainder in Taylor's expansion of log((1+x)/(1-x)) multiplied by 6/5. 1
 1, 108, 1296, 326592, 15116544, 665127936, 28298170368, 235092492288, 47958868426752, 1929639176699904, 10968475320188928, 3027299188372144128, 4738381338321616896, 4605706660848611622912, 178087324219479649419264, 6853291511342734094893056 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS An upper bound for the Lagrange-remainder in the expansion of log((1+x)/(1-x)) for x=1/3, i.e., for log(2), is R(2*n):=(1/2^(2*n+1) + 1/3^(2*n+1))/(2*n+1). REFERENCES M. Barner and F. Flohr, Analysis I, de Gruyter, 5te Auflage, 2000; p. 293. LINKS W. Lang, More comments. FORMULA a(n)=denominator(A(n)), where A(n):=(6/5)*(1/2^(2*n+1) + 1/3^(2*n+1))/(2*n+1) = A096951(n)/((2*n+1)*6^(2*n)). EXAMPLE n=4: R(2*4)=(5/6)* A096952(4)/a(4) = (5/6)*4039/15116544 = 20195/90699264 = 0.0002226589..., therefore log(2)-2*sum(((1/3)^(2*k-1))/(2*k-1),k=1..4) < 0.0002226589... In fact, the partial sum is 0.0000124233... PROG (PARI) vector(30, n, n--; denominator((6/5)*(1/2^(2*n+1) + 1/3^(2*n+1))/(2*n+1))) \\ Michel Marcus, Jul 06 2015 (MAGMA) [Denominator((6/5)*(1/2^(2*n+1) + 1/3^(2*n+1))/(2*n+1)): n in [0..20]]; // Vincenzo Librandi, Jul 06 2015 CROSSREFS Numerators are given in A096952. Sequence in context: A202608 A202092 A202484 * A187302 A269277 A115135 Adjacent sequences:  A096950 A096951 A096952 * A096954 A096955 A096956 KEYWORD nonn,easy,frac AUTHOR Wolfdieter Lang, Jul 16 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 04:40 EDT 2019. Contains 325189 sequences. (Running on oeis4.)