login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A096866 Function A062402(x) = sigma(phi(x)) is iterated. Starting with n, a(n) is the smallest term arising in trajectory, either in transient or in terminal cycle. 6
1, 1, 3, 3, 5, 3, 7, 7, 7, 7, 7, 7, 13, 7, 15, 15, 17, 7, 19, 15, 21, 7, 23, 15, 25, 26, 27, 28, 29, 15, 31, 31, 28, 31, 31, 28, 37, 31, 31, 31, 31, 28, 43, 28, 31, 28, 31, 31, 49, 28, 51, 31, 53, 31, 31, 31, 57, 31, 31, 31, 61, 31, 63, 63, 65, 28, 67, 63, 31, 31, 71, 31, 73, 74 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..16384

EXAMPLE

n=240: list={240,127,312,[252,195],252,...}, a(240)=127, a transient;

n=254: list={254,312,[252,195],252,...}, a(254)=195, a recurrent term.

MATHEMATICA

gf[x_] :=DivisorSigma[1, EulerPhi[x]] gite[x_, hos_] :=NestList[gf, x, hos] Table[Min[gite[w, 20]], {w, 1, 256}]

PROG

(Scheme) (define (A096866 n) (let loop ((visited (list n)) (m n)) (let ((next (A062402 (car visited)))) (cond ((member next visited) m) (else (loop (cons next visited) (min m next))))))) ;; Antti Karttunen, Nov 18 2017

CROSSREFS

Cf. A062401, A062402, A096862, A096863, A096864 (largest term), A096993.

Cf. also A096865.

Sequence in context: A215495 A335115 A299149 * A015909 A320045 A334481

Adjacent sequences:  A096863 A096864 A096865 * A096867 A096868 A096869

KEYWORD

nonn

AUTHOR

Labos Elemer, Jul 21 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 01:22 EST 2020. Contains 338631 sequences. (Running on oeis4.)