login
A096862
Function A062402(x)=sigma(phi(x)) is iterated. Starting with n, a(n) is the count of distinct terms arising during this trajectory; a(n)=t(n)+c(n)=t+c, where t is the number of transient terms, c is the number of recurrent terms [in the terminal cycle].
4
1, 2, 1, 2, 3, 2, 2, 3, 3, 3, 4, 2, 2, 3, 1, 2, 4, 3, 5, 2, 2, 4, 3, 2, 3, 2, 5, 1, 5, 2, 3, 4, 3, 4, 4, 2, 4, 5, 4, 4, 5, 2, 6, 3, 4, 3, 4, 4, 6, 3, 5, 4, 7, 5, 5, 4, 4, 5, 5, 3, 3, 4, 4, 5, 3, 3, 4, 5, 5, 4, 4, 3, 3, 4, 5, 4, 3, 4, 3, 5, 6, 5, 5, 4, 5, 6, 6, 5, 4, 4, 3, 5, 3, 4, 3, 5, 3, 6, 3, 5, 8, 5, 4, 3, 3
OFFSET
1,2
EXAMPLE
n=256: list={256,255,255}, transient=t=1, cycle=c=1, a(256)=t+c=2.
MATHEMATICA
gf[x_] :=DivisorSigma[1, EulerPhi[x]] gite[x_, hos_] :=NestList[gf, x, hos] Table[Length[Union[gite[w, 1000]]], {w, 1, 256}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 21 2004
STATUS
approved