login
A096778
Number of partitions of n with at most two even parts.
4
1, 1, 2, 3, 5, 7, 10, 14, 19, 26, 34, 45, 58, 75, 95, 121, 151, 189, 234, 289, 354, 433, 526, 637, 768, 923, 1105, 1319, 1569, 1861, 2202, 2597, 3056, 3587, 4201, 4908, 5723, 6658, 7732, 8961, 10367, 11971, 13802, 15884, 18253, 20942, 23992, 27445, 31353
OFFSET
0,3
COMMENTS
Also number of partitions of n+4 with exactly two even parts. Example: a(3)=3 because the partitions of 7 with exactly two even parts are [4,2,1], [3,2,2] and [2,2,1,1,1]. a(n)=A116482(n+4,2). - Emeric Deutsch, Feb 21 2006
REFERENCES
Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=2. - N. J. A. Sloane, Aug 31 2014
FORMULA
G.f.: (1/((1-x^2)*(1-x^4)))/Product(1-x^(2*i+1), i=0..infinity). More generally, g.f. for number of partitions of n with at most k even parts is (1/Product(1-x^(2*i), i=1..k))/Product(1-x^(2*i+1), i=0..infinity).
a(n) ~ 3^(3/4) * n^(1/4) * exp(Pi*sqrt(n/3)) / (8*Pi^2). - Vaclav Kotesovec, May 29 2018
EXAMPLE
a(3)=3 because we have [3],[2,1] and [1,1,1].
MATHEMATICA
CoefficientList[ Series[(1/((1 - x^2)*(1 - x^4)))/Product[1 - x^(2i + 1), {i, 0, 50}], {x, 0, 48}], x] (* Robert G. Wilson v, Aug 16 2004 *)
CROSSREFS
Cf. A038348.
Cf. A116482.
Sequence in context: A238658 A116480 A023026 * A325862 A280277 A102108
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 16 2004
EXTENSIONS
More terms from Robert G. Wilson v, Aug 17 2004
More terms from Emeric Deutsch, Feb 21 2006
STATUS
approved