OFFSET
0,3
COMMENTS
Also number of partitions of n+4 with exactly two even parts. Example: a(3)=3 because the partitions of 7 with exactly two even parts are [4,2,1], [3,2,2] and [2,2,1,1,1]. a(n)=A116482(n+4,2). - Emeric Deutsch, Feb 21 2006
REFERENCES
Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=2. - N. J. A. Sloane, Aug 31 2014
FORMULA
G.f.: (1/((1-x^2)*(1-x^4)))/Product(1-x^(2*i+1), i=0..infinity). More generally, g.f. for number of partitions of n with at most k even parts is (1/Product(1-x^(2*i), i=1..k))/Product(1-x^(2*i+1), i=0..infinity).
a(n) ~ 3^(3/4) * n^(1/4) * exp(Pi*sqrt(n/3)) / (8*Pi^2). - Vaclav Kotesovec, May 29 2018
EXAMPLE
a(3)=3 because we have [3],[2,1] and [1,1,1].
MATHEMATICA
CoefficientList[ Series[(1/((1 - x^2)*(1 - x^4)))/Product[1 - x^(2i + 1), {i, 0, 50}], {x, 0, 48}], x] (* Robert G. Wilson v, Aug 16 2004 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 16 2004
EXTENSIONS
More terms from Robert G. Wilson v, Aug 17 2004
More terms from Emeric Deutsch, Feb 21 2006
STATUS
approved