The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096748 Expansion of (1+x)^2/(1-x^2-x^4). 5
 1, 2, 2, 2, 3, 4, 5, 6, 8, 10, 13, 16, 21, 26, 34, 42, 55, 68, 89, 110, 144, 178, 233, 288, 377, 466, 610, 754, 987, 1220, 1597, 1974, 2584, 3194, 4181, 5168, 6765, 8362, 10946, 13530, 17711, 21892, 28657, 35422, 46368, 57314, 75025, 92736, 121393, 150050 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The ratio a(n+1) / a(n) increasingly approximates two constants connected to the golden ratio: (phi+1)/2 = 1.30901699... = A239798 and (phi-1)*2 = 1.23606797... = A134972, according to whether n is odd or even. - Davide Rotondo, Jul 31 2020 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,1,0,1). FORMULA a(n) = a(n-2)+a(n-4). a(n) = 2*F((n+1)/2)*(1-(-1)^n)/2+F((n+4)/2)*(1+(-1)^n)/2. a(2*n) = A000045(n+2); a(2*n+1) = 2*A000045(n+1). a(n) = Sum_{k=0..n} binomial(floor((n-k)/2), floor(k/2)). - Paul Barry, Jul 24 2004 a(n) = A079977(n)+A079977(n-2)+2*A079977(n-1). - R. J. Mathar, Jul 15 2013 MATHEMATICA CoefficientList[Series[(1+x)^2/(1-x^2-x^4), {x, 0, 50}], x] (* or *) LinearRecurrence[{0, 1, 0, 1}, {1, 2, 2, 2}, 50] (* Harvey P. Dale, Jan 29 2012 *) CROSSREFS Cf. A000045, A079977. Cf. A134972 and A239798 (limiting ratios for a(n+1)/a(n)). Sequence in context: A102240 A026837 A005855 * A263659 A022866 A350701 Adjacent sequences: A096745 A096746 A096747 * A096749 A096750 A096751 KEYWORD easy,nonn AUTHOR Paul Barry, Jul 07 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 17:12 EST 2022. Contains 358702 sequences. (Running on oeis4.)