

A096739


Numbers n such that n^4 can be written as a sum of four distinct positive 4th powers.


6



353, 651, 706, 1059, 1302, 1412, 1765, 1953, 2118, 2471, 2487, 2501, 2604, 2824, 2829, 3177, 3255, 3530, 3723, 3883, 3906, 3973, 4236, 4267, 4333, 4449, 4557, 4589, 4942, 4949, 4974, 5002, 5208, 5281, 5295, 5463, 5491, 5543, 5648, 5658, 5729, 5859
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Every multiple of a member is a member.  David Wasserman, Nov 16 2007
Is this sequence the same as A003294?  David Wasserman, Nov 16 2007


REFERENCES

D. Wells, Curious and interesting numbers, Penguin Books, p. 139.


LINKS

Table of n, a(n) for n=1..42.
K. Rose and S. Brudno, More about four biquadrates equal one biquadrate, Math. Comp., 27 (1973), 491494.
Eric Weisstein's World of Mathematics, Diophantine Equation 4th Powers.


EXAMPLE

353^4=30^4+120^4+272^4+315^4.
3723 is in the sequence since we have 3723^4 = 2270^4 + 2345^4 + 2460^4 + 3152^4.
706^4 = 60^4 + 240^4 + 544^4 + 630^4
1059^4 = 90^4 + 360^4 + 816^4 + 945^4
1302^4 = 480^4 + 680^4 + 860^4 + 1198^4
1412^4 = 120^4 + 480^4 + 1088^4 + 1260^4


CROSSREFS

Cf. A003294
Sequence in context: A058375 A059635 A003294 * A039664 A054825 A304385
Adjacent sequences: A096736 A096737 A096738 * A096740 A096741 A096742


KEYWORD

nonn


AUTHOR

Lekraj Beedassy, May 30 2002


EXTENSIONS

Corrected by Bo Asklund (boa(AT)mensa.se), Nov 05 2004
Corrected and extended by David Wasserman, Nov 16 2007


STATUS

approved



