login
A096636
Smallest prime p > prime(n+2) such that p is a quadratic residue mod the first n odd primes 3, 5, 7, 11, ..., prime(n+1), and p is a quadratic non-residue mod prime(n+2).
9
5, 7, 19, 79, 331, 751, 1171, 7459, 10651, 18379, 90931, 78439, 399499, 644869, 2631511, 1427911, 4355311, 5715319, 49196359, 43030381, 163384621, 249623581, 452980999, 1272463669, 505313251
OFFSET
0,1
COMMENTS
Same as smallest prime p with property that the Legendre symbol (p|q) = 1 for the first n odd primes q = prime(k+1), k = 1, 2, ..., n, and (p|q) = -1 for q = prime(n+2). - T. D. Noe, Mar 06 2013
EXAMPLE
Let f(p) = list of Legendre(p|q) for q = 3,5,7,11,13,...
Then f(3), f(5), f(7), f(11), ... are:
p=3: 0, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, ...
p=5: -1, 0, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, ...
p=7: 1, -1, 0, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, ...
p=11: -1, 1, 1, 0, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, ...
p=13: 1, -1, -1, -1, 0, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, ...
p=17: -1, -1, -1, -1, 1, 0, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, ...
p=19: 1, 1, -1, -1, -1, 1, 0, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, ...
p=5 is the first list that begins with -1, so a(0) = 5,
p=7 is the first list that begins 1, -1, so a(1) = 7,
p=19 is the first list that begins 1, 1, -1, so a(2) = 19.
MATHEMATICA
f[n_] := Block[{k = 2}, While[ JacobiSymbol[n, Prime[k]] == 1, k++ ]; Prime[k]]; t = Table[0, {50}]; Do[p = Prime[n]; a = f[p]; If[ t[[ PrimePi[a]]] == 0, t[[ PrimePi[a]]] = p; Print[ PrimePi[a], " = ", p]], {n, 10^9}]
CROSSREFS
Cf. A094929, A222756 (p and q switched).
See also A096637, A096638, A096639, A096640. - Jonathan Sondow, Mar 07 2013
Sequence in context: A289041 A229065 A171131 * A101588 A288405 A280150
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jun 24 2004
EXTENSIONS
Better definition from T. D. Noe, Mar 06 2013
Entry revised by N. J. A. Sloane, Mar 06 2013
Simpler definition from Jonathan Sondow, Mar 06 2013
STATUS
approved