login
Consecutive states of a linear congruential pseudo-random number generator that has the spectrally best primitive root for 2^31-1 as multiplier.
1

%I #23 Aug 29 2024 11:56:27

%S 1,62089911,847344462,1061653656,1954074819,226824280,953102500,

%T 1452288378,50913524,2133871779,1843965925,427233754,195855103,

%U 1546822229,1652729917,1636805220,217994169,1312006067,208869911,310792805,675992938,1109700100,855351136,863373758

%N Consecutive states of a linear congruential pseudo-random number generator that has the spectrally best primitive root for 2^31-1 as multiplier.

%C The results of the spectral tests for this generator are given in line 18 of Table 1 in D. Knuth's TAOCP vol. 2, page 106.

%D G. A. Fishman, L. R. Moore III; An exhaustive analysis of multiplicative congruential random number generators with modulus 2^31-1. SIAM Journal on Scientific and Statistical Computing, Volume 7, Issue 1 (1986), 24-45. Erratum, ibid, Vol. 7, Issue 3 (1986) p. 1058.

%D D. E. Knuth, The Art of Computer Programming Third Edition. Vol. 2 Seminumerical Algorithms. Chapter 3.3.4 The Spectral Test, Page 108. Addison-Wesley 1997.

%H Alois P. Heinz, <a href="/A096559/b096559.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Ps#PRN">Index entries for sequences related to pseudo-random numbers</a>.

%F a(1)=1, a(n)=62089911*a(n-1) mod (2^31-1).

%p a:= proc(n) option remember; `if`(n<2, n,

%p irem(62089911 *a(n-1), 2147483647))

%p end:

%p seq(a(n), n=1..30); # _Alois P. Heinz_, Jun 10 2014

%t NestList[Mod[#*62089911, 2^31 - 1] &, 1, 50] (* _Paolo Xausa_, Aug 29 2024 *)

%o (PARI) a(n)=lift(Mod(62089911,2147483647)^(n-1)) \\ _M. F. Hasler_, May 14 2015

%Y Cf. A096550-A096561, A061364.

%K nonn

%O 1,2

%A _Hugo Pfoertner_, Aug 14 2004