%I #21 Aug 29 2024 06:09:56
%S 1,69069,475559465,2801775573,1790562961,3104832285,4238970681,
%T 2135332261,381957665,1744831853,1303896393,1945705589,2707602097,
%U 4198202557,3820321881,201201733,2583294017,4003049741,2417848425,1454463253,3332335313,2360275549,2093206905,2813570789
%N Consecutive internal states of a linear congruential pseudo-random number generator with a parameter proposed by George Marsaglia as a "candidate for the best of all multipliers".
%D D. E. Knuth, The Art of Computer Programming Third Edition. Vol. 2 Seminumerical Algorithms. Chapter 3.3.4 The Spectral Test, Page 108. Addison-Wesley 1997.
%D Marsaglia, G., The structure of linear congruential sequences, in Applications of Number Theory to Numerical Analysis, (edited by S. K. Zaremba), Academic Press, New York, 249-286, 1972
%H Alois P. Heinz, <a href="/A096551/b096551.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Ps#PRN">Index entries for sequences related to pseudo-random numbers.</a>
%F a(1)=1, a(n) = 69069 * a(n-1) mod 2^32. The sequence is periodic with period length 2^30. - corrected by _Hugo Pfoertner_, Aug 10 2011
%p a:= proc(n) option remember; `if`(n<2, n,
%p irem(69069 *a(n-1), 4294967296))
%p end:
%p seq(a(n), n=1..30); # _Alois P. Heinz_, Jun 10 2014
%t NestList[Mod[#*69069, 2^32] &, 1, 50] (* _Paolo Xausa_, Aug 29 2024 *)
%o (PARI) a(n)=lift(Mod(69069,2^32)^(n-1)) \\ _Charles R Greathouse IV_, Jan 14 2016
%Y Cf. A096550-A096561 for other pseudo-random number generators.
%K nonn,easy
%O 1,2
%A _Hugo Pfoertner_, Jul 18 2004