This site is supported by donations to The OEIS Foundation.



Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A096550 Consecutive internal states of the IMSL pseudo-random number generator RNUN when started with ISEED=1. 11
1, 16807, 282475249, 1622650073, 984943658, 1144108930, 470211272, 101027544, 1457850878, 1458777923, 2007237709, 823564440, 1115438165, 1784484492, 74243042, 114807987, 1137522503, 1441282327, 16531729, 823378840, 143542612 (list; graph; refs; listen; history; text; internal format)



This generator is also called "The minimal standard generator" or LCG16807 by L'Ecuyer. Generators of this form are ascribed to D. H. Lehmer, first described by Hutchinson and independently by Downham and Roberts (see link). It was first analyzed by Lewis, Goodman and Miller (see link).


D. W. Hutchinson, A new uniform pseudo-random number generator. Comm, ACM 9, No. 6, 432-433, 1966.

D. E. Knuth, The Art of Computer Programming Third Edition. Vol. 2 Seminumerical Algorithms. Chapter 3.3.4 The Spectral Test, Page 108. Addison-Wesley 1997.


Eric M. Schmidt and Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from Eric M. Schmidt)

D. Y. Downham and F. D. K. Roberts, Multiplicative congruential pseudo-random number generators. The Computer Journal, Volume 10, Issue 1, pp. 74-77

Pierre L'Ecuyer, Software for Uniform Random Number Generation: Distinguishing the Good and the Bad. Proceedings of the 2001 Winter Simulation Conference, IEEE Press, Dec. 2001, 95-105

P. A. W. Lewis, A. S. Goodman and J. M. Miller, A pseudo-random number generator for the System/360, IBM Systems Journal, Volume 8 Issue 2, 136-146, 1969

Stephen K. Park and Keith. W. Miller, Random Number Generators: Good Ones are Hard to Find, Communications of the ACM, Volume 31, Number 10 (October, 1988), pp. 1192-1201.


a(1)=1, a(n) = 7^5 * a(n-1) mod (2^31-1). The sequence is periodic with period length 2^31-2.


a:= proc(n) option remember; `if`(n<2, n,

      irem(16807 *a(n-1), 2147483647))


seq(a(n), n=1..30);  # Alois P. Heinz, Jun 10 2014



#include <iostream>

#include <random>

void A096550(int max)


  std::minstd_rand0 gen;

  std::cout << "1 1\n";

  for (int i = 2; i <= max; ++i)

    std::cout << i << ' ' << gen() << '\n';

} // Eric M. Schmidt, Dec 18 2012


Cf. A096551-A096561 (other pseudo-random number generators).

Sequence in context: A017357 A017477 A017609 * A184466 A214356 A237806

Adjacent sequences:  A096547 A096548 A096549 * A096551 A096552 A096553




Hugo Pfoertner, Jul 18 2004



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 04:13 EST 2014. Contains 252326 sequences.