This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096493 Number of distinct primes in continued fraction period of square root of n. 3
 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 1, 0, 0, 0, 1, 2, 1, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 2, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 2, 1, 2, 0, 0, 0, 0, 0, 3, 0, 1, 1, 2, 1, 1, 0, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 3, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,19 LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 EXAMPLE n=127: the period={3,1,2,2,7,11,7,2,2,1,3,22}, distinct-primes={2,3,7,11}, so a[127]=4; MATHEMATICA {te=Table[0, {m}], u=1}; Do[s=Count[PrimeQ[Union[Last[ContinuedFraction[n^(1/2)]]]], True]; te[[u]]=s; u=u+1, {n, 1, m}]; te dpcf[n_]:=Module[{s=Sqrt[n]}, If[IntegerQ[s], 0, Count[Union[ ContinuedFraction[ s][[2]]], _?PrimeQ]]]; Array[dpcf, 110] (* Harvey P. Dale, Mar 18 2016 *) CROSSREFS Cf. A003285, A013646, A096491, A096492. Sequence in context: A244250 A167230 A093658 * A269242 A076882 A229745 Adjacent sequences:  A096490 A096491 A096492 * A096494 A096495 A096496 KEYWORD nonn AUTHOR Labos Elemer, Jun 29 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.