This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096426 Floor of the area consecutive odd sided triangles. 0
 6, 17, 31, 48, 69, 93, 121, 152, 187, 225, 267, 312, 360, 412, 468, 526, 589, 655, 724, 797, 873, 953, 1036, 1122, 1212, 1306, 1403, 1503, 1607, 1715, 1826, 1940, 2058, 2179, 2304, 2432, 2563, 2698, 2837, 2979, 3125, 3274, 3426, 3582, 3741, 3904, 4070 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS The area of an odd sided triangle is irrational. Proof: Area = (1/4)*sqrt((c+b-a)*(a-c+b)*(a+c-b)*(a+c+b)) The sides of an odd sided triangle are of the form 4k+1 or 4k+3. All permutations of the remainders of sides 4k+r for the factors c+b-a),(a-c+b),(a+c-b),(a+b+c) evaluate to 1 1 1 3 or 3 3 3 1 Thus the remainder of D ==(c+b-a)*(a-c+b)*(a+c-b)*(a+c+b) mod 4 is 3 => D is not square => Area is irrational. LINKS Eric Weisstein's World of Mathematics, Lemniscate Constant Eric Weisstein's World of Mathematics, Gauss's Constant Eric Weisstein's World of Mathematics, Magic Hexagon FORMULA Area = (1/4)*sqrt((c+b-a)*(a-c+b)*(a+c-b)*(a+c+b)) where a < b < c are the sides of a triangle. Floor(Area) is this sequence. EXAMPLE Triangle with sides 3,5,7 units has area = 6.4951905283832..sq units. 6 is the first entry in the table. MATHEMATICA fa[n_]:=Module[{s=Total[n]/2}, Floor[Sqrt[s(s-n[[1]])(s-n[[2]])(s- n[[3]])]]]; fa/@Partition[Range[3, 101, 2], 3, 1] (* From Harvey P. Dale, Apr 25 2011 *) PROG (PARI) area(n) = { for(x=1, n, a=x+x+1; b=a+2; c=b+2; y=1/4*sqrt((c+b-a)*(a-c+b)*(a+c-b)*(a+c+b)); print1(floor(y)", ") ) } CROSSREFS Cf. A096378. Sequence in context: A212461 A204059 A067559 * A130051 A038795 A216892 Adjacent sequences:  A096423 A096424 A096425 * A096427 A096428 A096429 KEYWORD nonn AUTHOR Cino Hilliard (hillcino368(AT)gmail.com), Aug 08 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .