login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A096402 n! times the volume of the polytope x_i >= 0 for 1 <= i <= n and x_i + x_{i+1} + x_{i+2} <= 1 for 1 <= i <= n-2. 0
1, 1, 1, 2, 5, 14, 47, 182, 786, 3774, 19974, 115236, 720038, 4846512, 34950929, 268836776, 2197143724, 19013216102, 173672030192, 1669863067916, 16858620684522, 178306120148144, 1971584973897417, 22748265125187632 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

The problem of computing the polytope volume was raised by A. N. Kirillov.

Stanley refers to Exercise-4.56(d) of Enumerative Combinatorics, vol. 1, 2nd ed. in mathoverflow question 87801. - Michael Somos, Feb 07 2012

LINKS

Table of n, a(n) for n=1..24.

R. Stanley, A polynomial recurrence involving partial derivatives

FORMULA

f(1, 1, n)*n!, where f(a, b, 0)=1, f(0, b, n) = 0 for n>0 and the derivative of f(a, b, n) with respect to a is f(b-a, 1-a, n-1)

a(n) = n! * g(0, 1, n+1) where g(a, b, n) = f(a, b, n)/a. - Michael Somos, Feb 21 2012

EXAMPLE

f(a,b,1)=a, f(a,b,2)= ab - a^2/2.

x + x^2 + x^3 + 2*x^4 + 5*x^5 + 14*x^6 + 47*x^7 + 182*x^8 + 786*x^9 +...

CROSSREFS

Sequence in context: A149903 A149904 A115276 * A007268 A109156 A143918

Adjacent sequences:  A096399 A096400 A096401 * A096403 A096404 A096405

KEYWORD

nonn

AUTHOR

Richard Stanley, Aug 06 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 19:19 EST 2016. Contains 278770 sequences.