%I #13 Feb 19 2015 08:39:04
%S 3,7,11,12,16,20,24,25,29,33,37,38,39,43,47,51,52,56,60,64,65,69,73,
%T 77,78,79,83,87,91,92,96,100,104,105,109,113,117,118,119,120,124,128,
%U 132,133,137,141,145,146,150,154,158,159,160,164,168,172,173,177,181,185
%N Complement of A004128.
%C Shape sequence for A055938 is A001511; shape sequence for a(n) is A051064; A001511, A051064 and A055457 are p-adic valuations for p = 2, 3 & 5.
%C Also n! never ends in this many 0's in bases 3 and 6. - _Carl R. White_, Jan 21 2008
%e A004128 begins 0 1 2 4 5 6 8 9 10 13 14 15 ... therefore a(n) begins 3 7 11 12 16 20 24 25 ...
%p b:=n->sum(floor(3*n/3^k),k=1..n): {seq(n,n=0..222)} minus {seq(b(n),n=0..150)}; # _Emeric Deutsch_, Dec 09 2004
%t A004128 = Log[3, CoefficientList[ Series[ 1/(1+x)^(1/3), {x, 0, 200}], x] // Denominator]; A096346 = Complement[ Range[A004128 // Last], A004128] (* _Jean-François Alcover_, Feb 19 2015 *)
%Y Cf. A055457, A086343.
%K easy,nonn
%O 0,1
%A _Alford Arnold_, Aug 04 2004
%E More terms from _Emeric Deutsch_, Dec 09 2004