%I #21 Aug 08 2021 01:48:02
%S 1,7,55,481,4645,49171,566827,7073725,95064361,1369375615,21054430591,
%T 344231563897,5964569413645,109196040092491,2106381399472435,
%U 42705264827626261,907920105215691217,20198878182718877815
%N E.g.f.: exp(x)/(1-x)^6.
%C Sum_{k = 0..n} A094816(n,k)*x^k give A000522(n), A001339(n), A082030(n), A095000(n), A095177(n) for x = 1, 2, 3, 4, 5 respectively.
%H G. C. Greubel, <a href="/A096307/b096307.txt">Table of n, a(n) for n = 0..250</a>
%F a(n) = Sum_{k = 0..n} A094916(n, k)*6^k.
%F a(n) = Sum_{k = 0..n} binomial(n, k)*(k+5)!/5!.
%F a(n) = 2F0(6,-n;;-1). - _Benedict W. J. Irwin_, May 27 2016
%F From _Peter Bala_, Jul 25 2021: (Start)
%F a(n) = (n+6)*a(n-1) - (n-1)*a(n-2) with a(0) = 1 and a(1) = 7. Cf. A001689.
%F First-order recurrence: P(n-1)*a(n) = n*P(n)*a(n-1) - 1 with a(0) = 1, where P(n) = n^5 + 10*n^4 + 45*n^3 + 100*n^2 + 109*n + 44 = A094794(n).
%F (End)
%t Table[HypergeometricPFQ[{6, -n}, {}, -1], {n, 0, 20}] (* _Benedict W. J. Irwin_, May 27 2016 *)
%t With[{nn = 250}, CoefficientList[Series[Exp[x]/(1 - x)^6, {x, 0, nn}], x] Range[0, nn]!] (* _G. C. Greubel_, May 27 2016 *)
%Y Cf. A000522, A001339, A082030, A095000, A095177, A001689, A094794.
%K nonn,easy
%O 0,2
%A _Philippe Deléham_, Jun 26 2004