%I #17 Oct 31 2023 17:41:58
%S 13,20,30,42,54,66,78,94,112,128,146,162,174,190,212,232,248,266,282,
%T 296,314,334,358,384,402,414,426,438,462,498,526,544,564,588,608,628,
%U 650,670,692,712,732,756,774,786,806,844,884,906,918,934
%N Sum of successive sums of successive primes: a(n) = s(n) + s(n+1) where s(n) = prime(n) + prime(n+1) (A001043).
%C The first term is the only term that has a chance of being prime.
%H Seiichi Manyama, <a href="/A096277/b096277.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A001043(n) + A001043(n+1) = A000040(n) + 2*A000040(n+1) + A000040(n+2). - _M. F. Hasler_, Jun 02 2017
%e The sums of the first two pairs of successive primes are 5 and 8. 5+8 = 13 is the first term in the sequence.
%t Total/@Partition[Total/@Partition[Prime[Range[60]],2,1],2,1] (* _Harvey P. Dale_, May 10 2011 *)
%t Nest[ListConvolve[{1,1},#]&,Prime[Range[100]],2] (* _Paolo Xausa_, Oct 31 2023 *)
%o (PARI) f1(n,f(n)=prime(n)+prime(n+1)) = for(x=1,n,print(f(x)+f(x+1)","))
%Y Cf. A001043, A000040.
%K easy,nonn
%O 1,1
%A _Cino Hilliard_, Jun 22 2004
%E Edited by _M. F. Hasler_, Jun 02 2017