login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A096053 a(n) = (3*9^n - 1)/2. 12
1, 13, 121, 1093, 9841, 88573, 797161, 7174453, 64570081, 581130733, 5230176601, 47071589413, 423644304721, 3812798742493, 34315188682441, 308836698141973, 2779530283277761, 25015772549499853, 225141952945498681 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Generalized NSW numbers. - Paul Barry, May 27 2005

Counts total area under elevated Schroeder paths of length 2n+2, where area under a horizontal step is weighted 3. Case r=4 for family (1+(r-1)x)/(1-2(1+r)x+(1-r)^2*x^2). Case r=2 gives NSW numbers A002315. Fifth binomial transform of (1+8x)/(1-16x^2), A107906. - Paul Barry, May 27 2005

Primes in this sequence include: a(2) = 13, a(4) = 1093, a(7) = 797161. Semiprimes in this sequence include: a(3) = 121 = 11^2, a(5) = 9841 = 13 * 757, a(6) = 88573 = 23 * 3851, a(9) = 64570081 = 1871 * 34511, a(10) = 581130733 = 1597 * 363889, a(12) = 47071589413 = 47 * 1001523179, a(19) = 225141952945498681 = 13097927 * 17189128703.

Sum of divisors of 9^n. - Altug Alkan, Nov 10 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (10,-9).

FORMULA

From Paul Barry, May 27 2005: (Start)

G.f.: (1+3*x)/(1-10*x+9*x^2);

a(n) = Sum_{k=0..n} binomial(2n+1, 2k)*4^k;

a(n) = ((1+sqrt(4))*(5+2*sqrt(4))^n+(1-sqrt(4))*(5-2*sqrt(4))^n)/2. (End)

a(n-1) = (-9^n/3)*B(2n,1/3)/B(2n) where B(n,x) is the n-th Bernoulli polynomial and B(k)=B(k,0) is the k-th Bernoulli number.

a(n) = 10*a(n-1) - 9*a(n-2).

a(n) = 9*a(n-1) + 4. - Vincenzo Librandi, Nov 01 2011

a(n) = A000203(A001019(n)). - Altug Alkan, Nov 10 2015

a(n) = A320030(3^n-1). - Nathan M Epstein, Jan 02 2019

MATHEMATICA

Table[(3*9^n - 1)/2, {n, 0, 18}] (* L. Edson Jeffery, Feb 13 2015 *)

PROG

(MAGMA) [(3*9^n-1)/2: n in [0..20]]; // Vincenzo Librandi, Nov 01 2011

(PARI) a(n)=(3*9^n-1)/2 \\ Charles R Greathouse IV, Sep 28 2015

(PARI) vector(30, n, n--; sigma(9^n)) \\ Altug Alkan, Nov 10 2015

CROSSREFS

Cf. A083420, A096045, A096046, A096047, A096054.

Cf. A107903, A138894 ((5*9^n-1)/4).

Sequence in context: A091111 A196921 A317483 * A033470 A297594 A326569

Adjacent sequences:  A096050 A096051 A096052 * A096054 A096055 A096056

KEYWORD

nonn,easy

AUTHOR

Benoit Cloitre, Jun 18 2004

EXTENSIONS

Edited by N. J. A. Sloane, at the suggestion of Andrew S. Plewe, Jun 15 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 22:05 EDT 2019. Contains 328291 sequences. (Running on oeis4.)