|
|
A096012
|
|
Numbers k such that k^2+1 and (k+2)^2+1 are both prime; twin k^2+1 primes.
|
|
12
|
|
|
2, 4, 14, 24, 54, 124, 204, 384, 464, 634, 644, 714, 1094, 1144, 1174, 1244, 1274, 1314, 1374, 1564, 1614, 1674, 1684, 1964, 2054, 2084, 2094, 2404, 2454, 2534, 2664, 2834, 2924, 3134, 3304, 3534, 3754, 3774, 4024, 4154, 4174, 4364, 4604, 4614, 4734, 4784
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Seiichi Manyama)
|
|
FORMULA
|
a(k) = A108814(k) - 1. - Jeppe Stig Nielsen, Feb 26 2016
|
|
MATHEMATICA
|
Select[Range[5000], AllTrue[{#^2+1, (#+2)^2+1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 23 2014 *)
Select[Range[5000], PrimeQ[#^2 + 1] && PrimeQ[(# + 2)^2 + 1] &] (* Vincenzo Librandi, Feb 27 2016 *)
|
|
PROG
|
(MAGMA) [n: n in [1..5000] | IsPrime(n^2+1) and IsPrime((n+2)^2+1)]; // Vincenzo Librandi, Feb 27 2016
(PARI) isok(n) = isprime(n^2+1) && isprime((n+2)^2+1); \\ Michel Marcus, Feb 27 2016
|
|
CROSSREFS
|
Cf. A005574, A108814.
Sequence in context: A283290 A283379 A090889 * A261562 A102930 A135113
Adjacent sequences: A096009 A096010 A096011 * A096013 A096014 A096015
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Jason Earls, Jul 20 2004
|
|
STATUS
|
approved
|
|
|
|