This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095991 Numbers n such that f(k) * 2^n - 1 is prime, where f(j) = A070826(j) and k is the number of decimal digits of 2^n. 0
 2, 3, 4, 6, 14, 17, 18, 23, 33, 43, 45, 53, 60, 70, 114, 141, 162, 178, 387, 657, 787, 951, 1517, 1882, 1999, 2423, 2722, 3635, 3636, 3893, 5021, 5631 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(1) through a(32) have been proved to be prime with WinPFGW. a(32) has 7901 digits. No more terms up to 7300. LINKS EXAMPLE a(5)=14 because 1155 * 2^14 - 1 = 18923519, a prime. MATHEMATICA Do[ If[ PrimeQ[ Product[ Prime[i], {i, Floor[ n / Log[2, 10] + 1]}] * 2^(n - 1) - 1], Print[n]], {n, 7300}] (* Robert G. Wilson v, Jul 23 2004 *) CROSSREFS Sequence in context: A038767 A188715 A174046 * A293714 A049911 A056712 Adjacent sequences:  A095988 A095989 A095990 * A095992 A095993 A095994 KEYWORD more,nonn,base AUTHOR Jason Earls, Jul 18 2004 EXTENSIONS Edited by Robert G. Wilson v, Jul 23 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 01:14 EDT 2019. Contains 326136 sequences. (Running on oeis4.)