This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095978 Number of solutions to y^2=x^3+x (mod p) as p runs through the primes. 5
 2, 3, 3, 7, 11, 19, 15, 19, 23, 19, 31, 35, 31, 43, 47, 67, 59, 51, 67, 71, 79, 79, 83, 79, 79, 99, 103, 107, 115, 127, 127, 131, 159, 139, 163, 151, 179, 163, 167, 147, 179, 163, 191, 207, 195, 199, 211, 223, 227, 259, 207, 239, 271, 251, 255, 263 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The only rational solution of y^2 = x^3 + x is (y, x) = (0, 0). See the Silverman reference, Theorem 44.1 with a proof on pp. 388 - 390 (in the 4th edition, 2014, Theorem 1, pp. 354 - 356). - Wolfdieter Lang, Feb 08 2016 This is also the number of solutions to y^2 = x^3 - 4*x (mod p) as p runs through the primes. - Seiichi Manyama, Sep 16 2016 REFERENCES J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, Theorem 45.1 on p. 399. In the 4th edition, 2014, Theorem 1 on p. 365. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 FORMULA a(1) = 2; if prime(n) == 3 (mod 4) then a(n) = prime(n); if prime(n) = A002144(m) then if A002972(m) == 1 (mod 4) then a(n) = prime(n) - 2*A002972(m), otherwise a(n) = prime(n) + 2*A002972(m). EXAMPLE n = 21: prime(21) = A000040(21) = 73 = A002144(9)  == 1 (mod 4), A002972(9) = 3 == 3 (mod 4) (not 1 (mod 4)), a(n) = 73 + 2*3 = 79. n = 22: prime(22) = A000040(22) = 79 == 3 (mod 4), a(n) = prime(22) = 79. MAPLE a:= proc(n)   local p, xy, x;   p:= ithprime(n);   if p mod 4 = 3 then return p fi;   xy:= [Re, Im](GaussInt:-GIfactors(p)[2][1][1]);   x:= op(select(type, xy, odd));   if x mod 4 = 1 then p - 2*x else p + 2*x fi end proc: a(1):= 2: map(a, [\$1..100]); # Robert Israel, Feb 09 2016 MATHEMATICA a[n_] := Module[{p, xy, x}, p = Prime[n]; If[Mod[p, 4]==3, Return[p]]; xy = {Re[#], Im[#]}& @ FactorInteger[p, GaussianIntegers -> True][[2, 1]]; x = SelectFirst[xy, OddQ]; If[Mod[x, 4]==1, p - 2*x, p + 2*x]]; a[1] = 2; Array[a, 100] (* Jean-François Alcover, Feb 26 2016, after Robert Israel*) CROSSREFS Cf. A000040, A002144, A002972, A267859. Sequence in context: A080088 A098715 A167886 * A156763 A169653 A129012 Adjacent sequences:  A095975 A095976 A095977 * A095979 A095980 A095981 KEYWORD nonn AUTHOR Lekraj Beedassy, Jul 16 2004 EXTENSIONS Edited. Update of reference, formula corrected, examples given, and a(21) - a(56) from Wolfdieter Lang, Feb 06 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.