This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095977 Expansion of 2*x / ((1+x)^2*(1-2*x)^2). 2
 2, 4, 14, 32, 82, 188, 438, 984, 2202, 4852, 10622, 23056, 49762, 106796, 228166, 485448, 1029162, 2174820, 4582670, 9631360, 20194802, 42253724, 88235734, 183927992, 382769082, 795364308, 1650380958, 3420066544, 7078742402 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Number of 2 X 2 tiles in all tilings of a 3 X (n+1) rectangle with 1 X 1 and 2 X 2 square tiles. - Emeric Deutsch, Feb 18 2007 The terms of this sequence have a primitive divisor for all terms beyond the 4th if and only if n is not of the form 4k+2, for some nonnegative integer k. - Anthony Flatters (Anthony.Flatters(AT)uea.ac.uk), Aug 17 2007 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv preprint arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq. 17 (2014) #14.1.5 A. Flatters, Prime divisors of some Lehmer-Pierce sequences, arXiv:0708.2190 [math.NT], 2007. R. P. Grimaldi, Tilings, Compositions, and Generalizations, J. Int. Seq. 13 (2010), 10.6.5, page 7. H. Prodinger, On binary representations of integers with digits -1,0,1, Integers 0 (2000), #A08. Index entries for linear recurrences with constant coefficients, signature (2,3,-4,-4) FORMULA a(n) = (1/27)*((3*n + 2)*2^(n + 2) - (6*n + 8)*(-1)^n). a(n) = 2 * A073371(n-1). a(n) = Sum_{k=0..floor((n+1)/2)} k*2^k*binomial(n+1-k,k). - Emeric Deutsch, Feb 18 2007 MAPLE a:=n->n/9*2^(n+2)+1/27*2^(n+3)-2*n/9*(-1)^n-8/27*(-1)^n: seq(a(n), n=1..30); # Emeric Deutsch, Feb 18 2007 MATHEMATICA Table[(1/27)*((3*n + 2)*2^(n + 2) - (6*n + 8)*(-1)^n) , {n, 1, 50}] (* G. C. Greubel, Dec 28 2016 *) PROG (PARI) Vec(2*x / ((1+x)^2 * (1-2*x)^2) + O(x^50)) \\ Michel Marcus, Nov 07 2015 CROSSREFS Cf. A128099, A073371. Sequence in context: A283353 A263987 A295909 * A129744 A148257 A148258 Adjacent sequences:  A095974 A095975 A095976 * A095978 A095979 A095980 KEYWORD nonn,easy,changed AUTHOR Ralf Stephan, Jul 16 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.