This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095930 Number of walks of length 2n between two nodes at distance 2 in the cycle graph C_10. 2
 1, 4, 15, 57, 220, 859, 3381, 13380, 53143, 211585, 843756, 3368259, 13455325, 53774932, 214978335, 859595529, 3437550076, 13748021995, 54986385093, 219930610020, 879683351911, 3518631073489, 14074256379660, 56296324109907, 225183460127725, 900729032983924 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In general 2^n/m*Sum_{r=0..m-1} cos(2Pi*k*r/m)*cos(2Pi*r/m)^n is the number of walks of length n between two nodes at distance k in the cycle graph C_m. Here we have m=10 and k=2. Equals INVERT transform of A014138: (1, 3, 8, 22, 64, 196,...). - Gary W. Adamson, May 15 2009 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (7,-13,4) FORMULA a(n) = 4^n/10*Sum_{r=0..9} cos(2*Pi*r/5)*cos(Pi*r/5)^(2*n). a(n) = 7*a(n-1)-13*a(n-2)+4*a(n-3). G.f.: (-x+3*x^2)/((-1+4*x)*(1-3*x+x^2)) a(n) = (4^n + Lucas(2*n-1))/5. With a(0) = 0, binomial transform of A098703. - Ross La Haye, May 31 2006 a(n) = (2^(-1-n)*(2^(1+3*n) - (3-sqrt(5))^n*(1+sqrt(5)) + (-1+sqrt(5))*(3+sqrt(5))^n))/5. - Colin Barker, Apr 27 2016 E.g.f.: (2*exp(4*x) + (-1 - sqrt(5))*exp(((3 - sqrt(5))*x)/2) + (-1 + sqrt(5))*exp(((3 + sqrt(5))*x)/2))/10. - Ilya Gutkovskiy, Apr 27 2016 MATHEMATICA f[n_]:=FullSimplify[TrigToExp[(4^n/10)Sum[Cos[2Pi*k/5]Cos[Pi*k/5]^(2n), {k, 0, 9}]]]; Table[f[n], {n, 1, 35}] PROG (PARI) Vec((-x+3*x^2)/((-1+4*x)*(1-3*x+x^2)) + O(x^50)) \\ Colin Barker, Apr 27 2016 CROSSREFS Cf. A014138. Sequence in context: A125145 A242781 A277924 * A026850 A109642 A164589 Adjacent sequences:  A095927 A095928 A095929 * A095931 A095932 A095933 KEYWORD nonn,easy AUTHOR Herbert Kociemba, Jul 12 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 08:15 EDT 2018. Contains 316520 sequences. (Running on oeis4.)