login
A095895
G.f.: A(x) = Product_{n>=1} 1/(1 - n*A007947(n)*x^n)^(1/n^2), where A007947(n) is the product of the distinct prime factors of n.
0
1, 1, 2, 3, 6, 8, 22, 27, 62, 107, 230, 309, 942, 1194, 2829, 5489, 11153, 15922, 48863, 64439, 154697, 307045, 615602, 910291, 2826566, 3883346, 8840108, 18696403, 36496897, 55654425, 174825676, 239374320, 537938704, 1197382791, 2267244673
OFFSET
0,3
COMMENTS
In general the smallest positive integers b(n) that produce an integer sequence from the g.f.: Product_{n>=1} (1 - b(n)*x^n)^(1/n^m) is given by b(n) = n^(m-1)*A007947(n), where A007947(n) is the product of the distinct prime factors of n and m is any positive integer.
PROG
(PARI) a(n)=polcoeff(prod(k=1, n, 1/(1-k*prod(i=1, omega(k), factor(k)[i, 1])*x^k+x*O (x^n))^(1/k^2)), n)
CROSSREFS
Sequence in context: A072847 A274371 A339589 * A051934 A153915 A355581
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 11 2004
STATUS
approved