login
A095867
Values y associated with A096545(n), sorted on z, then on y and finally on x.
5
4, 6, 14, 10, 19, 17, 15, 32, 30, 36, 17, 23, 34, 42, 19, 51, 54, 38, 61, 39, 43, 59, 60, 23, 33, 48, 53, 55, 48, 54, 69, 43, 54, 31, 40, 38, 82, 53, 70, 75, 74, 86, 95, 96, 92, 31, 84, 51, 94, 47, 34, 55, 51, 65, 85, 76, 57, 123, 73, 121, 81, 108, 64, 71, 73, 135, 75, 107, 87
OFFSET
1,1
COMMENTS
For 0<x<y<z, the primitive quadruples (x,y,z,w) satisfy x^3 + y^3 + z^3 = w^3.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..13798 (terms corresponding to z <= 8000)
Fred Richman, Sums of Three Cubes
EXAMPLE
a(1)=4 corresponding to the quadruple (3,4,5,6).
MATHEMATICA
s[w_] := Solve[0 < x < y < z && x^3 + y^3 + z^3 == w^3 && GCD[x, y, z, w] == 1, {x, y, z}, Integers];
xyzw = Reap[For[w = 1, w <= 200, w++, sw = s[w]; If[sw != {}, Print[{x, y, z, w} /. sw; Sow[{x, y, z, w} /. sw ]]]]][[2, 1]] // Flatten[#, 1]&;
SortBy[xyzw, {#[[3]]&, #[[2]]&, #[[1]]&}][[All, 2]] (* Jean-François Alcover, Mar 06 2020 *)
CROSSREFS
Primitive quadruples (x, y, z, w) = (A095868, A095867, A096545, A096546).
Sequence in context: A016072 A335163 A365963 * A253535 A349171 A338658
KEYWORD
nonn
AUTHOR
Ray Chandler, Jun 28 2004
STATUS
approved