login
A095840
Number of ways to write the n-th prime power as sum of two prime powers.
6
0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 3, 3, 2, 3, 4, 3, 3, 7, 2, 3, 3, 2, 3, 2, 2, 3, 7, 2, 2, 3, 2, 4, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 1, 11, 3, 3, 4, 0, 2, 3, 1, 3, 3, 3, 1, 4, 1, 1, 2, 4, 2, 1, 3, 3, 2, 1, 3, 5, 1, 12, 3, 2, 1, 3, 2, 2, 3, 2, 4, 2, 1, 2, 2, 0, 1, 1, 3, 2, 4, 2, 3, 2, 0, 2, 3, 1, 2, 2, 2, 1, 3
OFFSET
1,4
COMMENTS
a(n) = A071330(A000961(n)).
See A095842 and A095841 for prime powers having no more than one partition into two prime powers.
LINKS
EXAMPLE
A000961(8) = 3^2 = 9 = 1+8 = 2+7 = 4+5, therefore a(8)=3.
PROG
(Haskell)
a095840 = a071330 . a000961 -- Reinhard Zumkeller, Jan 11 2013
CROSSREFS
Sequence in context: A162345 A048689 A069923 * A131343 A089051 A364631
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 10 2004
STATUS
approved