login
Greatest number, not divisible by 4, having exactly n partitions into three positive squares.
2

%I #7 Jan 28 2013 03:05:09

%S 793,1885,3763,6307,13843,16003,21547,34483,48427,54763,85507,90787,

%T 111763,103387,166147,137083,222643,211843,289963,253507,296587,

%U 319867,462883,375523,393187,546067,502483,532123,615883,590947,662803,991027,703123,958483

%N Greatest number, not divisible by 4, having exactly n partitions into three positive squares.

%C These are conjectured values. The Mathematica program checks numbers up to 10^6.

%H Donovan Johnson, <a href="/A095812/b095812.txt">Table of n, a(n) for n = 1..200</a> (checked up to 10^8)

%t lim=1000; nLst=Table[0, {lim^2}]; Do[n=a^2+b^2+c^2; If[n>0 && n<lim^2, nLst[[n]]++ ], {a, lim}, {b, a, Sqrt[lim^2-a^2]}, {c, b, Sqrt[lim^2-a^2-b^2]}]; Table[Last[Select[Flatten[Position[nLst, k]], Mod[ #, 4]>0&]], {k, 30}]

%Y Cf. A025414 (least sum of 3 nonzero squares in exactly n ways).

%K nonn

%O 1,1

%A _T. D. Noe_, Jun 07 2004