login
A095811
Greatest number, not divisible by 4, having exactly n partitions into three squares.
1
427, 1555, 3763, 6307, 13843, 16003, 21547, 34483, 48427, 54763, 85507, 90787, 111763, 103387, 166147, 137083, 222643, 211843, 289963, 253507, 296587, 319867, 462883, 375523, 393187, 546067, 502483, 532123, 615883, 590947
OFFSET
1,1
COMMENTS
These are conjectured values. The Mathematica program checks numbers up to 10^6. Note that a square can be zero.
MATHEMATICA
lim=1000; nLst=Table[0, {lim^2}]; Do[n=a^2+b^2+c^2; If[n>0 && n<lim^2, nLst[[n]]++ ], {a, 0, lim}, {b, a, Sqrt[lim^2-a^2]}, {c, b, Sqrt[lim^2-a^2-b^2]}]; Table[Last[Select[Flatten[Position[nLst, k]], Mod[ #, 4]>0&]], {k, 30}]
CROSSREFS
Cf. A095809 (least number having exactly n partitions into three squares).
Sequence in context: A272131 A054984 A251147 * A235217 A236383 A224668
KEYWORD
nonn
AUTHOR
T. D. Noe, Jun 07 2004
STATUS
approved