login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A095792 Z(n)-L(n), where Z=A095790 and L=A095791 are lengths of Zeckendorf and lazy Fibonacci representations in binary notation. 3
0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..101.

FORMULA

a(n)=0 if n is of the form F(k)-1 for k>=1 and a(n)=1 otherwise.

EXAMPLE

Zeckendorf-binary of 11 is 10100; lazy-Fibonacci-binary of 11 is 1111.

Thus Z(11)=5, L(11)=4 and a(11)=5-4=1.

MATHEMATICA

t1 = DeleteCases[IntegerDigits[-1 + Range[5001], 2], {___, 0, 0, ___}]; (* maximal, lazy *)

t2 = DeleteCases[IntegerDigits[-1 + Range[5001], 2], {___, 1, 1, ___}];  (* minimal, Zeckendorf *)

m = Map[Length, t2] - Take[Map[Length, t1], Length[t2]] (* A095792 *)

(* Peter J. C. Moses, Mar 03 2015 *)

CROSSREFS

Cf. A000045, A072649, A095791.

Sequence in context: A252742 A066247 A151774 * A288381 A169675 A093385

Adjacent sequences:  A095789 A095790 A095791 * A095793 A095794 A095795

KEYWORD

nonn

AUTHOR

Clark Kimberling, Jun 05 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 18 09:42 EST 2019. Contains 320249 sequences. (Running on oeis4.)