%I #13 Apr 29 2023 23:01:58
%S 1,1,2,3,4,4,5,6,6,7,8,9,9,10,11,11,12,13,13,14,15,16,17,17,17,18,19,
%T 19,20,21,22,23,24,25,26,26,26,26,27,28,28,29,30,31,31,32,33,34,35,36,
%U 37,38,39,39,39,39,39,40,41,41,42,43,44,45,46,47,47,48,48,48,49,50,51,52
%N a(1)=a(2)=1; a(n)=a(a(a(a(n-1))))+a(n-a(a(a(n-1)))).
%C A generalization of A004001.
%H J. Grytczuk, <a href="http://dx.doi.org/10.1016/j.disc.2003.10.022">Another variation on Conway's recursive sequence</a>, Discr. Math. 282 (2004), 149-161.
%F For n > 1, a(A000930(n)) = A000930(n-1).
%F Conjecture: lim_{n->oo} a(n)/n = 0.682327803828... (the real positive root of x^3 + x = 1).
%o (PARI) v=vector(150,j,1);for(n=3,150,g=v[v[v[v[n-1]]]]+v[n-v[v[v[n-1]]]];v[n]=g);a(n)=v[n]
%Y Cf. A004001, A093878, A095770, A095771.
%K nonn
%O 1,3
%A _Benoit Cloitre_, Jun 05 2004