%I #8 Mar 31 2012 14:02:23
%S 0,0,2,3,5,4,15,18,32,33,63,81,119,144,256,318,527,640,1029,1281,2236,
%T 2566,4273,5410,8261,10610,16868,21084,33943,43104,68218,88493,136343
%N Number of almost base-2 palindromic primes (A095743) in range ]2^n,2^(n+1)].
%C Ratio a(n)/A036378(n) converges as follows: 0, 0, 1, 0.6, 0.714286, 0.307692, 0.652174, 0.418605, 0.426667, 0.240876, 0.247059, 0.174569, 0.136468, 0.08933, 0.084488, 0.055702, 0.049028, 0.031388, 0.026634, 0.017408, 0.015933, 0.009567, 0.008318, 0.005488, 0.004361, 0.00291, 0.0024, 0.001555, 0.001295, 0.00085, 0.000695, 0.000465, 0.000369
%C Ratio a(n)/A095758(n) converges as follows: 1, 1, 0, 1.5, 1, 1, 3.75, 1.2, 2, 1.375, 1.909091, 1.446429, 1.652778, 1.515789, 1.718121, 1.452055, 1.636646, 1.191806, 1.570992, 1.283567, 1.708174, 1.380312, 1.534842, 1.392177, 1.547004, 1.311334, 1.573801, 1.302205, 1.521016, 1.419202, 1.570938, 1.389237, 1.546084
%H A. Karttunen, J. Moyer: <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a>
%H <a href="/index/Pri#primesubsetpop2">Index entries for sequences related to occurrences of various subsets of primes in range ]2^n,2^(n+1)]</a>
%Y The second diagonal of triangle A095759. Cf. A095742.
%K nonn,base
%O 1,3
%A _Antti Karttunen_, Jun 12 2004