login
Primes p for which A037888(p) = 1, i.e., primes whose binary expansion is almost symmetric, needing just a one-bit flip to become palindrome.
4

%I #16 Dec 05 2023 01:40:38

%S 2,11,13,19,23,29,37,41,47,59,61,67,89,97,103,131,137,157,167,173,181,

%T 191,193,199,211,223,227,229,239,251,277,281,317,337,349,367,373,383,

%U 401,419,431,463,467,479,487,491,503,509,521,563,569,577

%N Primes p for which A037888(p) = 1, i.e., primes whose binary expansion is almost symmetric, needing just a one-bit flip to become palindrome.

%H Robert Israel, <a href="/A095743/b095743.txt">Table of n, a(n) for n = 1..10000</a>

%H Antti Karttunen and J. Moyer, <a href="/A095062/a095062.c.txt">C-program for computing the initial terms of this sequence</a>

%p f:= proc(n) local L,i;

%p L:= convert(n,base,2);

%p add(abs(L[i]-L[-i]),i=1..floor(nops(L)/2))

%p end proc:

%p select(t -> f(t) = 1, [seq(ithprime(i),i=1..1000)]); # _Robert Israel_, Dec 04 2023

%Y The second row of array A095749. Cf. A095753, A095748.

%K nonn,base

%O 1,1

%A _Antti Karttunen_, Jun 12 2004