%I
%S 1,3,2,10,13,5,37,72,55,15,151,393,450,245,52,674,2202,3365,2748,1166,
%T 203,3263,12850,24582,26781,17048,5936,877,17007,78488,180477,245971,
%U 208856,109107,32243,4140,94828,502327,1349900,2209695,2346559,1634998
%N Triangle read by rows, formed from product of Aitken's (or Bell's) triangle (A011971) and Pascal's triangle (A007318).
%C These triangles are to be thought of as infinite lowertriangular matrices.
%e Triangle begins:
%e 1
%e 3 2
%e 10 13 5
%e 37 72 55 15
%e 151 393 450 245 52
%t a[0, 0] = 1; a[n_, 0] := a[n  1, n  1]; a[n_, k_] := a[n, k] = If[k < n + 1, a[n, k  1] + a[n  1, k  1], 0]; p[n_, r_] := If[r <= n + 1, Binomial[n, r], 0]; am = Table[ a[n, r], {n, 0, 9}, {r, 0, 9}]; pm = Table[p[n, r], {n, 0, 9}, {r, 0, 9}]; t = Flatten[am.pm]; Delete[ t, Position[t, 0]] (* _Robert G. Wilson v_, Jul 12 2004 *)
%Y Cf. A007318, A011971, A095674. Row sums give A095676. First column is A005493.
%K nonn,tabl,easy
%O 0,2
%A _N. J. A. Sloane_, based on a suggestion from _Gary W. Adamson_, Jun 22 2004
%E More terms from _Robert G. Wilson v_, Jul 13 2004
