login
A095673
Primes p = p_(n+1) such that p_n + p_(n+2) = 2*p_(n+1) + 12.
8
1069, 1759, 1913, 3803, 4463, 4603, 8329, 9109, 9749, 11633, 12619, 12763, 15199, 16993, 17299, 17449, 19163, 20029, 20183, 21943, 22349, 22409, 22549, 22943, 23209, 23339, 24709, 25373, 26209, 26783, 26993, 28669, 28979, 29723, 29959
OFFSET
1,1
COMMENTS
Primes that are third prime chords.
These come from music based on the prime differences where the chords are an even number of note steps from the primary note.
LINKS
MATHEMATICA
m = 3; Prime[1 + Select[ Range[3300], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &]] (* Robert G. Wilson v, Jul 14 2004 *)
Transpose[Select[Partition[Prime[Range[4000]], 3, 1], #[[1]]+#[[3]]== 2#[[2]] +12&]][[2]] (* Harvey P. Dale, Apr 18 2015 *)
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jul 02 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, Jul 14 2004
Edited by N. J. A. Sloane, Nov 07 2005
STATUS
approved